DOI QR코드

DOI QR Code

Efficient Clean-up of Oil Spilled Shorelines Using the Compressed Air Jet System and Concomitant Microbial Community Analysis

압축공기 분사시스템을 이용한 유류오염 해안의 효율적 정화 및 이에 따른 미생물군집분석

  • Chang, Jae-Soo (Department of Environmental Engineering, Korea Maritime University) ;
  • Kim, Kyung Hee (JH Green, Inc.) ;
  • Lee, Jae Shik (JH Green, Inc.) ;
  • Ekpeghere, Kalu I. (Department of Environmental Engineering, Korea Maritime University) ;
  • Koh, Sung-Cheol (Department of Environmental Engineering, Korea Maritime University)
  • Received : 2013.12.04
  • Accepted : 2013.12.18
  • Published : 2013.12.31

Abstract

The objectives of this study were to investigate effectiveness of the Compressed Air Jet (CAJ) System for cleaning up shorelines contaminated with crude oils and to examine effects of the system on total petroleum hydrocarbon (TPH) removal and microbial community changes before and after remediation of the oil-contaminated shorelines. These data will lead to better understanding of optimized remediation process. About 66% of TPH reduction was observed when the contaminated site was treated with the CAJ System 2, 3, 4, and 5 times. This treatment system was more efficient than the seawater pumping system under similar treatment conditions (by 40%). By the way, little oil degrader communities were observed despite a potential function of the air jet system to stimulate aerobic oil degraders. The apparent low population density of the oil degraders might be as a result of low concentration of TPH as a carbon source and limiting nutrients such as nitrogen and phosphorus. It was proposed that the CAJ System would contribute significantly to removal of residual oils on the shorelines in combination with addition of these limiting nutrients.

본 연구의 목표는 압축공기분사시스템을 이용하여 원유로 유출이 된 해안을 정화함에 있어서 그 정화효율성과 정화 전후의 총석유탄화수소(total petroleum hydrocarbon; TPH) 농도 및 미생물군집변화를 관찰함으로써 그 최적 정화과정을 이해하기 위한 기초자료를 얻고자 하는 것이다. 압축공기제트시스템을 2-5회 연속적용 시 오염지의 TPH가 약 66%까지 저감이 된 반면에 대조구인 해수를 펌핑한 경우에는 40% 정도의 저감효과가 관찰이 되었다. 압축공기의 분사 후 PCR-DGGE에 의한 미생물군집분석 결과에서는 유류분해미생물의 군집은 확인이 되지 않았다. 이는 정화에 의한 낮은 TPH 농도(약 100 mg/kg 수준, 탄소원), 처리환경에 내재적인 제한적인 질소 및 인의 농도에 기이한 것으로 판단된다. 따라서 잔여분의 유류는 에어제트시스템을 적용시 제한적 영양염류(질소 및 인 등)를 적절한 방식과 농도로 투여할 경우 거의 완전하게 제거가 가능할 것으로 사료된다. 향후 본 기술은 고농도의 유류 및 유기물로 오염된 다양한 수질환경 및 토양환경의 효율적이고 환경친화적인 정화에 활용이 될 것으로 기대된다.

Keywords

References

  1. Altas, R.M. 1981. Microbial degradation of petroleum hydrocarbons:an environmental perspective. Microbiol. Rev. 45, 180-209.
  2. Altas, R.M. and Bartha, R. 1992. Hydrocarbon biodegradation and oil spill bioremediation. Adv. Microb. Ecol. 12, 287-338. https://doi.org/10.1007/978-1-4684-7609-5_6
  3. Bejarano, A.C. and Michel, J. 2010. Large-scale risk assessment of polycyclic aromatic hydrocarbons in shoreline sediments from Saudi Arabia: Environmental legacy after twelve years of the Gulf war oil spill. Environ. Pollut. 158, 1561-1569. https://doi.org/10.1016/j.envpol.2009.12.019
  4. Campbell, B.J., Engel, A.S., Porter, M.L., and Takai, K. 2006. The versatile $\epsilon$ -proteobacteria: key players in sulphidic habitats. Nat. Rev. Microbiol. 4, 458-468. https://doi.org/10.1038/nrmicro1414
  5. Choi, K.S., Kim, S.H., Jeong, Y.K., Jang, K.L., and Lee, T.H. 1997. Production of biosurfactant by Tsukamurella sp. 26A. Kor. J. Microbiol. 33, 187-192.
  6. De Acevedo, G.T. and McInnerney, M.J. 1996. Emulsifying activity in themophilic and extremely thermophlic microorganisms. J. Inst. Microbiol. 16, 1-7. https://doi.org/10.1007/BF01569914
  7. Ekpeghere, K.I., Bae, H.J., Kwon, S.H., Kim, B.H., Park, D.Ja, and Koh, S.C. 2009. Clean-up of the crude oil contaminated marine sediments through biocarrier-mediated bioaugmentation. Kor. J. Microbiol. 45, 354-361.
  8. Fernandez-Luqueno, F., Valenzuela-Encinas, C., Marsch, R., Martinez-Suarez, C., Vazquez-Nunez, E., and Dendooven, L. 2011. Microbial communities to mitigate contamination of PAHs in soild possibilities and challenges: a review. Environ. Sci. Pollut. Res. 18, 12-30. https://doi.org/10.1007/s11356-010-0371-6
  9. Koh, S.H., Lee, H.K., and Lee, S.J. 1998. Effect of hydrocarbon uptake modes on oil degradation rate by mixed cultures of petroleum degraders. KSBB J. 13, 606-614.
  10. Ministry of Environment, Government of Republic of Korea. 2009. Official standard methods for contaminated soils.
  11. Roenberg, E. and Ron, E.Z. 1997. Bioemulsans: microbial polymeric emulsifiers. Curr. Opin. Biotechnol. 8, 313-316. https://doi.org/10.1016/S0958-1669(97)80009-2
  12. Seo, E.Y. and Song, H.K. 1994. Effects of diesel oil on the population and activity of soil microbial community. Kor. J. Microbiol. 32, 163-171.
  13. Sprocati, A.R., Alisi, C., Tasso, F., Marconi, P., Sciullo, A., Pinto, V., Chiavarini, S., Ubaldi, C., and Cremisini, C. 2012. Effectiveness of a microbial formula, as a bioaugmentation agent, tailored for bioremediation of diesel oil and heavy metal co-contaminated soil. Proc. Biochem. 47, 1649-1655.
  14. Zhang, Y. and Miller, R.M. 1994. Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl. Environ. Microbiol. 60, 2101-2106