DOI QR코드

DOI QR Code

The Study on the Effect of Efficient Microorganism for Early Stabilization of the Burial Sites

매몰지 조기 안정화를 위한 유용 미생물의 효과에 관한 연구

  • Kim, Hyun-Sook (Department of Bioengineering, Kyonggi University) ;
  • Park, Sujung (Environmental Infrastructure Research Department, Water Supply & Sewerage Research Division, National Institute of Environmental Research) ;
  • Jheong, Weonhwa (Environmental Infrastructure Research Department, Water Supply & Sewerage Research Division, National Institute of Environmental Research) ;
  • Srinivasan, Sathiyaraj (Department of Life Science, Kyonggi University) ;
  • Lee, Sang-Seob (Department of Life Science, Kyonggi University)
  • Received : 2013.06.26
  • Accepted : 2013.11.11
  • Published : 2013.12.31

Abstract

In this study, we have evaluated the effect of efficient microorganisms on odor-removal efficiency and early stabilization of the burial sites. We have developed an efficient microorganism designated as 'KEM' which have the ability to degrade organic compounds and remove odor effectively. Other efficient microorganisms already used on site, such as EM and Bacillus sp., were also compared. We preceded these experiment using lab-scale reactors under three conditions (control, only media and only body) and comparing the effect of with or without the application of tree efficient microorganisms separately. Analysis was focused on eight components (ammonia, TMA, $H_2S$, methyl mercaptan, dimethyl sulfide, dimethyl disulfide, $CO_2$ and $CH_4$), and as a result, efficient microorganisms were shown efficiency in the removal of ammonia and methyl mercaptan. The applied KEM decayed up to 71.2% of the buried meat. We were unable to observe significant differences in microbial communities between efficient microorganisms-treated and non-treated reactors due to the large presence of microorganisms in both soil and carcasses. However, it was possible to observe the effect on odor control and decay rate through the application of efficient microorganisms.

본 연구를 통해 유용 미생물을 적용하여 악취 저감 효과 및 조기 안정화에 미치는 영향을 알아보고자 하였다. 유기물 분해능과 악취 제어능이 뛰어난 유용 미생물 KEM을 개발하고, 이미 현장에 사용 중인 EM과 바실러스를 각각 적용하였다. 랩 스케일의 매몰지 모형 반응기를 제작하여 유용 미생물을 각각 적용한 경우와 적용하지 않은 경우(미생물을 적용하지 않고 사체만 매몰한 경우, 배지만 적용한 경우, 사체만 적용한 경우)로 나누어 실험을 진행하였다. 주기적인 수분 공급을 해줌으로써 가축 사체의 분해속도가 빨라진 것을 확인하였고, 유용 미생물을 적용한 반응기의 사체분해속도가 대조군 보다 빠른 것을 확인하였다. 가스는 총 8개의 성분(암모니아, TMA, 황화수소, 메틸머캅탄, DMS, DMDS, $CO_2$, $CH_4$)을 중점적으로 분석하였으며, 그 결과 유용 미생물을 적용하였을 경우 암모니아와 메틸머캅탄에 대하여 악취 저감 효율을 보였다. 연구에 사용되었던 토양 내에 많은 토양 미생물과 가축 사체에도 많은 미생물들이 존재하고 있어, 유용 미생물을 투입하였을 때의 뚜렷한 차이는 볼 수 없었다. 그러나 일정 부분에 한하여 악취 저감 효과와 부패 속도를 증가시키는 효과를 확인 할 수 있었다.

Keywords

References

  1. Amann, R.I., Ludwig, W., and Schleifer, K.H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143-169.
  2. Angelidaki, I. and Ahring, B.K. 1992. Effects of free long-chain fatty acids on thermophilic anaerobic digestion. Appl. Microbiol. Biotechnol. 37, 808-812.
  3. Banks, C.J. and Wang, Z. 1999. Development of a two phase anaerobic digester for the treatment of mixed abattoir wastes. Water Sci. Technol. 40, 67-76.
  4. Cassidy, D.P. and Hudak, A.J. 2001. Microorganism selection and biosurfactant production in a continuously and periodically operated bioslurry reactor. J. Hazard Mat. 84, 253-264. https://doi.org/10.1016/S0304-3894(01)00242-4
  5. Castaldi, F.J. and Ford, D.L. 1992. Slurry bioremediation of petrochemical waste sludges. Water Sci. Technol. 25, 207-212.
  6. Chun, J., Kim, K.Y., Lee, J.-H., and Choi, Y. 2010. The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454 GS FLX Titanium pyrosequencer. BMC Microbiol. 10, 101. https://doi.org/10.1186/1471-2180-10-101
  7. Eweis, J.B., Ergas, S.J., Chang, D.P.Y., and Schroeder, E.D. 1998. Bioremediation Principles pp. 207-236, McGraw-Hill, USA.
  8. Fava, F., Berselli, S., Conte, P., Piccolo, A., and Marchetti, L. 2004. Effects of humic substances and soya lecithin on the aerobic bioremediation of a soil historically contaminated by polycyclic aromatic hydrocarbons (PAHs). Biotechnol. Bioeng. 88, 214-223. https://doi.org/10.1002/bit.20225
  9. Fuller, M.E. and Manning, J.F. 2004. Microbiological changes during bioremediation of explosives-contaminated soils in laboratory and pilot-scale bioslurry reactors. Bioresour. Technol. 91, 123-133. https://doi.org/10.1016/S0960-8524(03)00180-9
  10. Hanyang University. 2002. Simultaneous Odors and Nutrients Removal Process Development by Soil Origin Microorganisms. Report for National Institute of Environmental Research.
  11. Higgins, M.J., Murthy, S.N., Striebig, B., Hepner, S., Yamani, S., Yarosz, D.P., and Toffey, W. 2002. Factors affecting odor production in Philadelphia Water Department Biosolids. Proceedings of Water Environment Federation Odors and Toxic Air Emissions.
  12. Ireri, V.R.G., Fabio, F., and Hector, M.P.V. 2008. A review on slurry bioreactors for bioremediation of soils and sediments. Microb. Cell Fact. 7, 5. https://doi.org/10.1186/1475-2859-7-5
  13. Janikowski, T.B., Velicogna, D., Punt, M., and Daugulis, A.J. 2002. Use of a two-phase partitioning bioreactor for degrading polycyclic aromatic hydrocarbons by a Sphingomonas sp. Appl. Microbiol. Biotechnol. 59, 368-376. https://doi.org/10.1007/s00253-002-1011-y
  14. McBean, E.A. and Ro Farquhar, G.J. 1995. Solid waste landfill engineering and design. Prentice Hall, New Jersey, USA.
  15. Ministry of environment. 2011. 정부, 전국 매몰지 일제 조사 후 보완.정비 착수. http://www.me.go.kr/web/286/me/common/board/detail.do?boardId=notice_02&decorator=me&idx=176629
  16. Oberbremer, A., Muller-Hurtig, R., and Wagner, F. 1990. Effect of the addition of microbial surfactants on hydrocarbon degradation in a soil population in a stirred reactor. Appl. Microbiol. Biotechnol. 32, 485-489. https://doi.org/10.1007/BF00903788
  17. Pinelli, D., Fava, F., Nocentini, M., and Pasquali, G. 1997. Bioremediation of a polycyclic aromatic hydrocarbon-contaminated soil by using different aerobic batch bioreactor system. J. Soil Contam. 6, 243-256. https://doi.org/10.1080/15320389709383563
  18. Salminen, E. and Rintala, J. 2001. Anaerobic digestion of organics solid poultry slaughterhouse waste - a review. Bioresour. Technol. 83, 13-26.
  19. Wang, S.Y. and Vipulanandar, C. 2001. Biodegradation of naphthalene contaminated soils in slurry bioreactors. J. Environ. Eng. 127, 748-754. https://doi.org/10.1061/(ASCE)0733-9372(2001)127:8(748)
  20. Zeev, R. and Aharon, A. 2000. Anaerobic-aerobic process for microbial degradation of retrabromobisphenol. Appl. Environ. Microbiol. 66, 2372-2377. https://doi.org/10.1128/AEM.66.6.2372-2377.2000
  21. Zhang, C., Hughes, J.B., Nishino, S.F., and Spain, J.C. 2000. Slurry-phase biological treatment of 2,4-dinitrotoluene and 2,6-dinitrotoluene: role of bioaugmentation and effects of high dinitrotoluene concentrations. Environ. Sci. Technol. 34, 2810-2816. https://doi.org/10.1021/es000878q

Cited by

  1. Characteristic study and isolation of Bacillus subtilis SRCM 101269 for application of cow manure vol.52, pp.1, 2016, https://doi.org/10.7845/kjm.2016.6001
  2. Pyrosequencing-based assessment of microbial community shifts in leachate from animal carcass burial lysimeter vol.587-588, 2017, https://doi.org/10.1016/j.scitotenv.2017.02.126
  3. Effects of Water Temperature and pH on Water Quality Improvement by a Mixture of Beneficial Microorganisms vol.40, pp.1, 2018, https://doi.org/10.4491/KSEE.2018.40.1.1