DOI QR코드

DOI QR Code

해안 사구에서 서식하는 토착식물로부터 분리된 근권미생물 Bacillus aerius MH1RS1의 식물성장 촉진 능력 연구

Plant Growth-promoting Ability by the Newly Isolated Bacterium Bacillus aerius MH1RS1 from Indigenous Plant in Sand Dune

  • 이은영 (수원대학교 환경에너지공학과) ;
  • 홍선화 (수원대학교 환경에너지공학과)
  • Lee, Eun Young (Department of Environmental and Energy Engineering, Suwon University) ;
  • Hong, Sun Hwa (Department of Environmental and Energy Engineering, Suwon University)
  • 투고 : 2013.09.05
  • 심사 : 2013.09.30
  • 발행 : 2013.10.30

초록

다양한 난개발과 해안도로, 방파제 등의 인공 구조물 설치로 인한 해안 침식과 해안선 파괴 등으로 해안사구가 크게 훼손되고 있다. 이에 본 연구에서는 해안사구에서 서식하고 있는 토착식물의 근권으로부터 식물 성장 촉진 능력이 있으면서 동시에 염분에 강한 내성을 가지는 근권세균의 library를 구축하였고, 이들 균주를 대상으로 식물 성장 촉진 능력을 평가하였다. 또한, 내염성 식물을 대상으로 사구 토양에서의 성장률에 근권세균이 미치는 영향을 평가한 후, 훼손된 사구의 복원에 가장 유용한 미생물을 선별하고 분리된 근권세균이 식물 성장에 미치는 영향을 평가하였다. 실험은 선정된 균주와 갯기름나물과 줄무늬갈대를 해안사구에 식재한 후 성장에 미치는 영향을 평가하였다. 그 결과, MH1RS1는 (IAA) production, siderophores, 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase) 그리고 염분내성을 가지고 있다. 갯기름나물의 경우는 줄기의 길이와 뿌리의 무게는 크게 향상되었다. 특히, 줄기의 생체와 뿌리 무게는 control과 비교했을 때 25% 성장이 향상되었다. 줄무늬 갈대는 Bacillus aerius MH1RS1 에 의해 초장은 18%와 뿌리의 생체 중은 20%로 크게 향상 되었다.

Coastal sand dunes have been seriously damaged caused by the development thoughtless for the environment and coastal erosion and destruction due to artificial structures like coast roads and breakwater. Hereupon, in this study we made a library of rhizobacteria that have the plant growth-promoting ability for plant rhizosphere of indigenous plants inhabiting in a coastal sand dune as well as the strong tolerance to salt, and evaluated the plant growth-promoting ability of these strains. Furthermore, we evaluated the effect of rhizobacteria on the growth rate of saline tolerant plants in sandy soil; selected out the most useful micro-organism for the restoration of a damaged sand dune. The effect of inoculation of strains selected from the first experiment on the growth of Peucedanum japonicum and Arundo donaxes planted in a coastal sand dune was evaluated. As a result, Bacillus aerius MH1RS1 had plant growth promoting activities: indole acetic acid (IAA) production, siderophores and 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase) activity, and also had a salinity tolerance. Also, in case of Peucedanum japonicum, the length of stems and weights of roots were enhanced by the inoculation of B. aerius MH1RS1. Fresh weights of stems and weights of roots in experimental group were, in particular, increased by 25% comparing with the control group. For an Arundo donax in experimental group, plant length increased by 18%, and weight of roots by 20% which is significant.

키워드

참고문헌

  1. So, J. H., Kim, D. J., Shin, J. H., Yu, C. B. and Lee, I. G., "Isolation and characterization of Bacillus cereus A-139 producing auxin from east coast sand dunes," Kor. J. Environ. Agric., 28(4), 447-452(2009). https://doi.org/10.5338/KJEA.2009.28.4.447
  2. Maun, M. A. and Baye, P. R., "The ecology of Ammophila breviligulata Fern. On coastal dune ecosystem," CRC Crit. Rev. Aquat. Sci., 1, 661-681(1989).
  3. Martinez, M. L., Moreno-Casasola, P. and Vazquez, G.., "Effects of disturbance by sand movement and inundation by water on tropical dune vegetation dynamics," Can. J. Bot., 75(11), 2005-2014(1997). https://doi.org/10.1139/b97-912
  4. Maun, M. A., "Adaptations enhancing survival and establishment of seedling on coastal dune systems," Vegetatio, 111 (1), 59-70(1994).
  5. Lim, J. H., Kim, J. G. and Kim, S. D., "Selection of the auxin and ACC deaminase producing plant growth promoting rhizobacteria from the coastal sand dune plant," Kor. J. Microbiol. Biotechnol., 36(4), 268-275(2008).
  6. Lee, M. S., Do, J. O., Park, M. S., Jung, S., Lee, K. H., Bae, K. S., Park, S. J. and Kim, S. B., "Dominance of Lysobacter sp. in the rhizosphere of two coastal sand dune plant species, Calystegia soldanella and Elymus mollis," Antonie Leeuwenhoek, 90(1), 19-70(2006). https://doi.org/10.1007/s10482-006-9056-z
  7. Opelt, K. and Berg, G., "Diversity and antagonistic potential of bateria associated with bryophytes from nutrientpoor habitats of Baltic Sea coast," Appl. Environ. Microbiol., 70 (11), 6569-6579(2004). https://doi.org/10.1128/AEM.70.11.6569-6579.2004
  8. Sylvia, D. M. and Will, M. E., "Establishment of vesiculararbuscular mycorrhizal fungi and other microorganisms on a beach replenishment site in Florida," Appl. Environ. Microbiol., 54(2), 348-352(1988).
  9. Sylvia, D. M., "Nursery inoculation of sea oats with vesicular- arbuscular mycorrhizal fungi and outplanting performance of Florida beaches," JCR, 5(4), 747-754(1989).
  10. Boopathy, R., "Factors limiting bioremediation technologies (review paper)," Biores. Technol., 74(1), 63-67(2004).
  11. Hwang, J. S., You, Y. H., Bae, J. J., Khan, S. A., Kim, J. G. and Choo, Y. S., "Effects of endophytic fungal secondary metabolites on the growth and physiological response of Carex kobomugi Ohwi," JCR, 27(3), 544-548(2011).
  12. Khan, S. A., Hamayun, M., Yoon, H. J. Kim, H. Y., Suh, S. J. Hwang, S. K., Kim, J. M., Lee, I. J., Choo, Y. S., Yoon, U. H., Kong, W. S., Lee, B. M. and Kim, J. G., "Plant growth promotion and Penicillium citrinum," BMC Microbiol., 8(1), 231-240(2008). https://doi.org/10.1186/1471-2180-8-231
  13. Khan, S. A., Hamayun, M., Kim, H. Y., Yoon, H. J., Lee, I. J. and Kim, J. G., "Gibberellin production and plant growth promotion by a newly isolated strain of Gliomastix murorum," World J. Microbiol. Biotechnol., 25(5), 829-833 (2009). https://doi.org/10.1007/s11274-009-9981-x
  14. Khan, S. A., Hamayun, M., Kim, H. Y., Yoon, H. J., Seo, J. C., Choo, Y. S., Lee, I. J., Kim, S. D., Rhee, I. K. and Kim, J. G., "A new strain of Arthrinium phaeospermum isolated from Carex kobomugi Ohwi is capable of gibberellins production," Biotechnol. Lett., 31(2), 283-287(2009). https://doi.org/10.1007/s10529-008-9862-7
  15. Nehl, D. B., Allen, S. J. and Brown, J. F., "Deleterious rhizosphere bacteria an intergrating perspective (review)," Appl. Soil Ecol., 5(1), 1-20(1996).
  16. Johnson, D. L., Anderson, D. R. and McGrath, S. P., "Soil microbial response during the phytoremediation of a PAH contaminated soil," Soil Biol. Biochem., 37(12), 2334-2336(2005). https://doi.org/10.1016/j.soilbio.2005.04.001
  17. Koo, S. Y. and Cho, K. S., "Interaction between plants and rhizobacteria in phytoremediation of heavy metal-contaminated soil," Kor. J. Microbiol. Biotechnol., 34(2), 83-93(2006).
  18. Hong, S. H., Lee, M. H., Kim, J. S. and Lee, E. Y., "Plant growth promoting activities and salt tolerance of rhizobacteria isolated from the native plants of coastal sand dune," Kor. J. Microbiol. Biotechnol., 40(3), 161-167(2012).
  19. Dell'Amico, E., Cavalca, L. and Andreoni, V., "Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria," FEMS Microbiol. Ecol., 52(2), 153-162(2005). https://doi.org/10.1016/j.femsec.2004.11.005
  20. Schwyn, B. and Neilands, J. B., "Universal chemical assay for the detection and determination of siderphores," Anal. Biochem., 160(1), 47-56(1987). https://doi.org/10.1016/0003-2697(87)90612-9
  21. Frankenberger, W. T. Jr. and Brunner, W., "Method of detection of auxin-indole-3-acetic acid in soil by high performance liquid chromatography," Soil Sci. Soc. Am. J., 47(2), 237-241(1983). https://doi.org/10.2136/sssaj1983.03615995004700020012x
  22. Gutierrez Mafiero, E. J., Acero, N., J Lucasm A. and Probanza, A., "The influence of native rhizobacteria on European alder (Alnus glutinosa (L.) Gaertn.) growth," Plant Soil, 182(1), 67-74(1996). https://doi.org/10.1007/BF00010996
  23. Poonguzhali, S., Madhaiyan, M. and Sa, T., "Cultivationdependent characterization of rhizobacterial communities from field grown Chines cabbage Brassica campestris ssp pekinensis and screening of traits for potential plant growth promotion," Plant Soil, 286(1-2), 167-180(2006). https://doi.org/10.1007/s11104-006-9035-1
  24. Koo, S. Y. and Cho, K. S., "Characterization of Serratia sp. K1RP-49 for Application to the Rhizoremediation of Heavy Metals," Environ. Earth Sci., 1, 3-13(2011).
  25. Lee, E S. and Hong, G. S., "Plant growth promotion by purple nonsulfur Rhodopseudomonas faecalis strains," Kor. J. Microbiol., 46(2), 157-161(2010).
  26. Deikman, J., "Molecular mechanisms of ethylene regulation of gene transcription," Plant Physiol., 100(3), 561-566(1997). https://doi.org/10.1111/j.1399-3054.1997.tb03061.x
  27. Glick, B. R., "Phytoremediation: synergistic use of plants and bacteria to clean up the environment," Biotechnol. Adv., 21 (5), 383-393(2006).
  28. Belimov, A. A., Hontzeas, N., Safronova, V. I., Demchinskaya, S. V., Piluzza, G., Bullitta, S. and Glick, B. R., "Cadmiumtolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.)," Soil Biol. Biochem., 37(2), 241-250(2005). https://doi.org/10.1016/j.soilbio.2004.07.033
  29. Glick, B. R., Penrose, D. M. and Li, J., "A model for the lowering of plant ethylene concentration by plant growthpromoting bacteria," J. Theor. Biol., 190(1), 63-68(2008).
  30. Hall, J. A., Peirson, D., Ghoch, S. and Glick, B. R., "Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2," Isr. J. Plant Sci., 44(1), 37-42(1996). https://doi.org/10.1080/07929978.1996.10676631
  31. Schwyn, B. and Neilands, J. B., "Universal chemical assay for the detection and determination of siderphores," Anal. Biochem., 160(1), 47-56(1987). https://doi.org/10.1016/0003-2697(87)90612-9
  32. Park, M. S., Jung, S. R., Lee, M. S., Kim, K. O., Do, J. O., Lee, K. H., Kim, S. B. and Bae, K. S., "Isolation and Characterization of Bacteria Associated with Two Sand Dune Plant Species, Calystegia soldanella and Elymus mollis," J. Microbiol., 43(3), 219-227(2005).
  33. Zhang, L., Wang, Y., Dai, J., Tang, Y., Yang, Q., Luo, X. and Fang, C., "Bacillus korlensis sp. nov., a moderately halotolerant bacterium isolated from a sand soil sample in China," Int. J. Syst. Evol. Microbiol., 59(7), 1787-1792(2009). https://doi.org/10.1099/ijs.0.004879-0
  34. Godinho, A., R. and Bhosle, S., "Bacteria from sand dunes of gor promoting growth in eggplant," World J. Agric. Sci., 6(5), 555-564(2010).
  35. Aslantas, R., Ramazan, C. and Sahin, F., "Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions," Sci. Hortic., 111(4), 371-377(2007). https://doi.org/10.1016/j.scienta.2006.12.016
  36. Tank, N. and Saraf, M., "Enhancement of plant growth and decomtamination of nickel-spiked soil using PGPR," J. Basic Microbiol., 49(2), 195-204(2009). https://doi.org/10.1002/jobm.200800090
  37. Qian, P. and Schoenau, J. J., "Practical applications of ion exchange resins in agricultural and environmental soil research," Can. J. Soil Sci., 82(1), 9-21(2002). https://doi.org/10.4141/S00-091
  38. Esitken, A., L. Pirlak., Turan, M. and Sahin, F., "Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry," Sci. Hortic., 110(4), 324-327(2006). https://doi.org/10.1016/j.scienta.2006.07.023