DOI QR코드

DOI QR Code

Physicochemical Properties of Sweet Potato Starch Reclaimed from Sweet Potato Processing Sludge

고구마 가공 슬러지로부터 회수된 고구마 전분의 물리화학적 특성

  • Kim, Hyun-Seok (Department of Food Science and Biotechnology, Andong National University)
  • 김현석 (국립안동대학교 식품생명공학과)
  • Received : 2013.08.16
  • Accepted : 2013.09.11
  • Published : 2013.12.31

Abstract

The physicochemical properties of sweet potato (SP) starches reclaimed from an SP-processing sludge without freezing (RC/NF) and with freezing (RC/FR) were investigated. Lab-isolated (LI) SP starch, as a control, were prepared from raw SP. RC/NF and RC/FR SP starches were recovered from SP-processing sludges by the repeated sieving and washing procedure. The total starch contents and amylopectin branch-chain distributions did not differ for three SP starches. Relative to LI and RC/NF SP starches (possessing similar physicochemical characteristics), the apparent amylose and phosphorus contents, swelling factor, and pasting viscosity were reduced for RC/FR SP starch. However, the freezing treatment altered X-ray diffraction pattern (at $5.5^{\circ}$, $11-12^{\circ}$, and $24^{\circ}$ $2{\theta}$) of RC/FR SP starch, which likely increased its gelatinization peak and completion temperatures. Its amorphous region in total diffractogram was reduced, resulting in the enhanced relative crystallinity. Overall results suggested SP starches recovered from an SP-processing sludge would have the potential to replace commercial SP starch products.

고구마의 가공공정(절단, 성형, 세척) 중 발생하는 고구마 가공슬러지로부터 고구마전분을 회수하여 전분소재로서의 활용가능성을 재고하기 위해 회수된 고구마전분들의 물리화학적 특성을 조사하였고 고구마 가공 슬러지의 냉동저장에 따른 고구마전분의 특성 변화를 비교하였다. 고구마 가공 슬러지로부터 회수된 전분들의 총전분 함량은 94.1-95.6%의 범위에 있었으나 겉보기 아밀로오스와 인 함량은 냉동 고구마 가공 슬러지로부터 회수된 고구마 전분이 다른 전분들에 비해 유의적으로 낮았다. 냉동저장 처리는 고구마전분의 아밀로펙틴 분지사슬 분포에 큰 영향을 미치지 않았으나 고구마전분 입자의 결정구조를 변형시켰으며 무정형 영역을 감소시켰다. 이로 인해 고구마전분의 팽윤력과 페이스팅 점도특성은 감소하였으며 최대호화온도와 호화종결온도는 상승하는 결과를 초래하였다. 전체적인 결과를 고려할 때 고구마 가공 슬러지를 획득한 즉시 회수한 고구마전분은 고구마로부터 직접 분리한 고구마전분과 물리화학적 특성이 유사하여 상업적인 전분소재로 사용가능할 것으로 기대되지만 냉동저장된 고구마 가공 슬러지로부터 분리 정제한 고구마전분을 상업적으로 이용하기 위해서는 가공식품에 있어 이의 가공적성 및 최종품질에 대한 영향 조사가 선행되어야 할 것 같다.

Keywords

References

  1. Abegunde OK, Mu TH, Chen JW, Deng FM. Physicochemical characterization of sweet potato starches popularly used in Chinese starch industry. Food Hydrocolloid. 33: 169-177 (2013) https://doi.org/10.1016/j.foodhyd.2013.03.005
  2. International Potato Center. Available from: http://www.cipotato. org/sweetpotato. Accessed May 11, 2013.
  3. Srichuwong S, Orikasa T, Matsuki J, Shiina T, Kobayashi T, Tokuyasu K. Sweet potato having a low temperature-gelatinizing starch as a promising feedstock for bioethanol production. Biomass Bioenerg. 39: 120-127 (2012) https://doi.org/10.1016/j.biombioe.2011.12.023
  4. Cheon JE, Baik MY, Choi SW, Kim CN, Kim BY. Optimization of Makgeolli manufacture using several sweet potatoes. Korean J. Food Nutr. 26: 29-34 (2013) https://doi.org/10.9799/ksfan.2013.26.1.029
  5. Yang JH, Park HY, Kim YS, Choi IW, Kim SS, Choi HD. Quality characteristics of vacuum-fried snacks prepared from various sweet potato cultivars. Food Sci. Biotechnol. 21: 525-530 (2012) https://doi.org/10.1007/s10068-012-0067-4
  6. Baek MH, Cha DS, Park HJ, Lim ST. Physicochemical properties of commercial sweet potato starches. Korean J. Food Sci. Technol. 32: 755-762 (2000)
  7. Kim JM, Park SJ, Lee CS, Ren C, Kim SS, Shin M. Functional properties of different Korean sweet potato varieties. Food Sci. Biotechnol. 20: 1501-1507 (2011) https://doi.org/10.1007/s10068-011-0208-1
  8. Monte-Neshich DC, Rocha TL, Guimares RL, Santana EF, Loureiro ME, Valle M, Grossi de SMF. Characterization and spatial localization of the major globulin families of taro (Colocasia esculenta L. Schott) tubers. Plant Sci. 112: 149-159 (1995) https://doi.org/10.1016/0168-9452(95)04257-1
  9. AACC. Approved Method of the AACC. 10th ed. Method 76-13. American Association of Cereal Chemists, St. Paul, MN, USA (2000)
  10. Morrison WR, Laignelet B. An improved colorimetric procedure for the determination of amylose in cereal and starches. J. Cereal Sci. 1: 9-20 (1983) https://doi.org/10.1016/S0733-5210(83)80004-6
  11. Kim HS, Higley JS, Huber KC. Alkaline dissolution of starch facilitated by microwave heating for analysis by size-exclusion chromatography. J. Agr. Food Chem. 54: 9664-9669 (2006) https://doi.org/10.1021/jf062003m
  12. Kim HS, Huber KC. Simple purification (desalting) procedure to facilitate structural analysis of an alkali-solubilized/neutralized starch solution by intermediate-pressure size-exclusion chromatography. J. Agr. Food Chem. 55: 4944-4948 (2007) https://doi.org/10.1021/jf063694p
  13. Anderson, KA. Micro-digestion and ICP-AEC analysis for the determination of macro and micro elements in plant tissues. Atom. Spectrosc. 17: 30-33 (1996)
  14. Kim HS, Huber KC. Physicochemical properties and amylopectin fine structures of A- and B-type granules of waxy and normal soft wheat starch. J. Cereal Sci. 51: 256-264 (2010) https://doi.org/10.1016/j.jcs.2009.11.015
  15. Cheetham NWH, Tao L. Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohyd. Polym. 36: 277-284 (1998) https://doi.org/10.1016/S0144-8617(98)00007-1
  16. Tester RF, Morrison WR. Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chem. 67: 551-557 (1990)
  17. Lee HO, Lee YJ, Kim JY, Kwon KH, Cha HS, Kim BS. Choosing quality indicators for quality prediction of frozen green pumpkin in distribution. Korean J. Food Sci. Technol. 45: 325-332 (2013) https://doi.org/10.9721/KJFST.2013.45.3.325
  18. Lee MH, Baek MH, Cha DS, Park HJ, Lim ST. Freeze-thaw stabilization of sweet potato starch gel by polysaccharide gums. Food Hydrocolloid. 16: 345-352.
  19. Szymoska J, Wodnicka K. Effect of multiple freezing and thawing on the surface and functional properties of granular potato starch. Food Hydrocolloid. 19: 753-760 (2005) https://doi.org/10.1016/j.foodhyd.2004.08.004
  20. Lim ST, Kasemsuwan T, Jane JL. Characterization of phosphorus in starch by 31P-nuclear magnetic resonance spectroscopy. Cereal Chem. 71: 488-493 (1994)
  21. Absar N, Zaidul ISM, Takigawa S, Hashimoto N, Matsuura-endo C, Yamauchi H, Noda T. Enzymatic hydrolysis of potato starches containing different amounts of phosphorus. Food Chem. 112: 57- 62 (2009) https://doi.org/10.1016/j.foodchem.2008.05.045
  22. Zobel HF. Starch crystal transformations and their industrial importance. Starch-Starke 40: 1-7 (1988) https://doi.org/10.1002/star.19880400102
  23. Szymoska J, Kork F, Komorowska-Czepirska E, Rbilas K. Modification of granular potato starch by multiple deep-freezing and thawing. Carbohyd. Polym. 52: 1-10 (2003) https://doi.org/10.1016/S0144-8617(02)00263-1
  24. Knorr H, Heinz V, Buckow R. High pressure application for food biopolymers. Biochim. Biophys. Acta 1764: 619-631 (2006) https://doi.org/10.1016/j.bbapap.2006.01.017

Cited by

  1. Physicochemical Characteristics of Sweetpotato (Ipomoea batatas (L.) Lam) Starch Depending on Cultivation Periods vol.46, pp.6, 2014, https://doi.org/10.9721/KJFST.2014.46.6.750
  2. Physicochemical Characteristics of Starches Purified fromNewly Developed Colored Sweet Potatoes, Danjami and Hogammi vol.34, pp.3, 2018, https://doi.org/10.9724/kfcs.2018.34.3.256