DOI QR코드

DOI QR Code

Protective SiC Coating on Carbon Fibers by Low Pressure Chemical Vapor Deposition

  • Bae, Hyun Jeong (Department of materials Engineering, Korea Aerospace University) ;
  • Kim, Baek Hyun (Department of materials Engineering, Korea Aerospace University) ;
  • Kwon, Do-Kyun (Department of materials Engineering, Korea Aerospace University)
  • Received : 2013.08.05
  • Accepted : 2013.11.18
  • Published : 2013.12.27

Abstract

High-quality ${\beta}$-silicon carbide (SiC) coatings are expected to prevent the oxidation degradation of carbon fibers in carbon fiber/silicon carbide (C/SiC) composites at high temperature. Uniform and dense ${\beta}$-SiC coatings were deposited on carbon fibers by low-pressure chemical vapor deposition (LP-CVD) using silane ($SiH_4$) and acetylene ($C_2H_2$) as source gases which were carried by hydrogen gas. SiC coating layers with nanometer scale microstructures were obtained by optimization of the processing parameters considering deposition mechanisms. The thickness and morphology of ${\beta}$-SiC coatings can be controlled by adjustment of the amount of source gas flow, the mean velocity of the gas flow, and deposition time. XRD and FE-SEM analyses showed that dense and crack-free ${\beta}$-SiC coating layers are crystallized in ${\beta}$-SiC structure with a thickness of around 2 micrometers depending on the processing parameters. The fine and dense microstructures with micrometer level thickness of the SiC coating layers are anticipated to effectively protect carbon fibers against the oxidation at high-temperatures.

Keywords

References

  1. Y. Xu, L. Cheng and L. Zhang, et al., Mater. Sci. Eng., 300, 196 (2001). https://doi.org/10.1016/S0921-5093(00)01533-1
  2. Y. Yin, J. G. Binner and T. E. Cross, et al., J. Mater. Sci., 29, 2250 (1994). https://doi.org/10.1007/BF01154706
  3. L. R. Zhao and B. Z. Jang, J. Mater. Sci., 32, 2811 (1997). https://doi.org/10.1023/A:1018612214572
  4. Y. Yin, J. G. Binner, T. E. Cross, et al., J. Mater. Sci., 29, 2250 (1994). https://doi.org/10.1007/BF01154706
  5. Y. Q. Wang, B. L. Zhou and Z. M. Wang, Carbon, 33(4), 427 (1995). https://doi.org/10.1016/0008-6223(94)00167-X
  6. T. Piquero, H. Vincent, C. Vincent and J. Bouix, Carbon, 33(4), 455 (1995). https://doi.org/10.1016/0008-6223(94)00170-5
  7. K. Kusakabe, B. K. Sea, J. I. Hayashi, H. Maeda and S. Morooka, Carbon, 34(2), 179 (1996). https://doi.org/10.1016/0008-6223(96)00166-2
  8. K. L. Choy, Prog. Mater. Sci., 48(2), 57 (2003). https://doi.org/10.1016/S0079-6425(01)00009-3
  9. G. Hackl, H. Gerhard and N. Popovska, Thin Solid Films, 513(1-2), 217 (2006). https://doi.org/10.1016/j.tsf.2006.02.001
  10. Y. J. Lee, Diam. Relat. Mat., 13(3), 383 (2004). https://doi.org/10.1016/j.diamond.2003.11.062
  11. T. Shimoo, K. Okamura, T. Akizuki and M. Take mura, J. Mater. Sci., 30(13), 3387 (1995). https://doi.org/10.1007/BF00349884
  12. G. Emig, N. Popovska and G. Schoch, Thin Solid Films, 241, 361 (1993).
  13. K. Kusakabe, B. Sea, J. Hayashi, H. Maeda and S. Morooka, Carbon, 34(2), 179 (1996). https://doi.org/10.1016/0008-6223(96)00166-2
  14. G. Emig, N. Popovska and G. Schoch, Thin Solid Films, 241, 361 (1993).
  15. T. Piquero, H. Vincent, C. Vincent and J. Bouix, Carbon, 33(4), 455 (1995). https://doi.org/10.1016/0008-6223(94)00170-5
  16. Y. Wang, Z. Wang, B. Zhou and C. Shi, J. Mater. Sci. Lett., 12, 817 (1993). https://doi.org/10.1007/BF00277983
  17. G. Hackl, H. Gerhard and N. Popovska, Thin Solid Films, 513, 217 (2006). https://doi.org/10.1016/j.tsf.2006.02.001
  18. Y. Wang, B. Zhou and Z. Wang, Carbon, 33(4), 427 (1995). https://doi.org/10.1016/0008-6223(94)00167-X
  19. W. Xie, Z. Mirza, G. Mobus, and S. Zhang, J. Am. Ceram. Soc., 95(6), 1878 (2012). https://doi.org/10.1111/j.1551-2916.2012.05153.x
  20. J. Schlichting, Powder Metall. Int., 12(3-4), 141 (1980).
  21. D. P. Stinton, W. J. Lackey, R. J. Lauf and T. M. Besmann, Ceram. Eng. Sci. Proc., 5, 668 (1984). https://doi.org/10.1002/9780470320228.ch21
  22. K. Minato and K. Fukuda, J. Mater. Sci., 23, 699 (1988). https://doi.org/10.1007/BF01174708
  23. D. Lespiaux, F. Langlasis and R. Naslain, J. Mater. Sci., 30, 1550 (1995).
  24. W. J. Lackey, J. A. Hanigofsky, G. B. Freeman, R. D. Hardin and A. Prasad, J. Am. Ceram. Soc., 78, 1564 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08852.x
  25. H. O. Pierson, Handbook of Chemical Vapor Deposition, 2nd Edition: Principles, Technology and Applications, (2nd edition, Noyes, New York, 1992), Chap. 9.
  26. Powder diffraction file, Joint Committee on Powder Diffraction Standard, Card 12-0212.
  27. M. G. So and J. S. Chun, J. Vac. Sci. Technol. A, 6(1), 5 (1988). https://doi.org/10.1116/1.574969
  28. C. Li, L. Huang, G. P. Snigdha, Y. Yu and L. Cao, ACS Nano, 6(10), 8868 (2012). https://doi.org/10.1021/nn303745e