DOI QR코드

DOI QR Code

Comparative Study on the Estimation Method of Fire Load for Residential Combustibles

주거공간 가연물의 화재하중 산정방법의 비교연구

  • Received : 2013.09.25
  • Accepted : 2013.12.06
  • Published : 2013.12.31

Abstract

As a preliminary study to evaluate the reliability of the calculation method of fire load for residential furniture combustibles, the present study estimates the fire load considering the volume data obtained by the 3D geometrical information of combustibles and material properties based on the literature survey and sample burning test. A kitchen sink cabinet, couch and workstation were investigated for estimating its fire load and real fire test have been performed to measure total energy released from the combustibles. Based on total energy measured from real fire test, the relative error of the estimated fire load due to literature survey and measured material properties showed 6~120% and less than 20%, respectively. It shows that the estimation error of fire load are greatly affected by its material properties as well as geometrical information of combustibles and the present study will be able to contribute to accurate estimation of fire load.

본 연구는 주거공간 내 가연물의 화재하중 산정방법의 신뢰성을 평가하기 위한 연구로서 가연물의 3차원 형상정보를 통해 체적을 산정하고 문헌조사와 시편실험을 통해 얻은 가연물의 물성을 적용하여 화재하중을 산정한다. 대상 가연물은 주방 싱크대, 가정용 소파, 책상 세트이며 실화재 실험을 통해 가연물에서 방출되는 총열방출량을 측정하였다. 실화재 실험에서 측정된 총열방출량을 기준으로 문헌조사에 기초하여 계산된 화재하중은 6~120% 정도의 상대오차를 보였으나 시편실험에 기초한 화재하중은 20% 이내로 나타났다. 본 연구는 화재하중 평가의 오차가 형상정보뿐만 아니라 가연물의 재료 물성에 큰 영향을 받는다는 사실을 보여주고 있으며 이러한 연구를 통해 화재하중 산정기법을 향상시키는데 기여할 수 있다.

Keywords

References

  1. H. W. Yii, "Effect of Surface Area and Thickness on Fire Loads", Fire Engineering Research Report, ISSN 1173-5996, Univ. of Canterbury (2000).
  2. J. Hietaniemi and E. Mikkola, "Design Fires for Fire Safety Engineering", VTT-WORK-139, ISBN 978-951-7479-7, VTT (2010).
  3. L. Staffansson, "Selecting Design Fires", Report 7032, Lund Univ (2010).
  4. E. Zalok and G. Hadjisophocleous, "Characterizing of Design Fires for Clothing Stores" Proceedings of the 5th International Seminar on Fire and Explosion Hazards, pp. 328-337 (2007).
  5. P. R. Shrivastava and P. H. Sawant, "Estimation of Fire Loads for an Educational Building - A Case Study", International Journal of Scientific Engineering and Technology, Vol. 2, No. 5, pp 388-391 (2013).
  6. P. G. Lee, Y. J. Lee, I. C. Choi and H. S. Kim, "A Study on the Fire Resistance Design of Building Considering the Fire Load Energy Density", Journal of Korean Institute of Fire Science & Engineering, Vol. 17, No. 2, pp. 10-16 (2003).
  7. W. H. Kim, "A Study of Fuel Loads in Office Buildings", Journal of Korean Institute of Fire Science & Engineering, Vol. 11, No. 1, pp. 37-45 (1997).
  8. J. G. Quintiere, "Principles of Fire Behavior", Delmar Publisher (1997).
  9. O. Grexa, M. Janssens, R. White and M. Dietenberger, "Fundamental Thermophysical Properties of Materials Derived From the Cone Calorimeter Measurements", Proceedings of 3rd International Scientific Conference Wood and Fire Safety, pp. 139-147 (1996).
  10. B. Gunther, K. Gebauer, R. Barkowski, M. Rosenthal and C. T. Bues, "Calorific Value of Selected Wood Species and Wood Products", European Journal of Wood and Wood Products, Vol. 30, No. 5, pp. 755-757 (2012).
  11. R. A. Bryant, T. J. Ohlemiller, E. L. Johnsson, A. Hamins, B. S. Grove, W. F. Guthrie, A. Maranghides and G. W. Mulholland, "The NIST 3 MW Quantitative Heat Release Rate Facility - Description and Procedures", NISTIR 7052, National Institute of Standards and Technology (2004).
  12. Technical Bulletin 133, "Flammability Test Procedure for Seating Furniture for Use in Public Occupancies", State of California Department of Consumer Affairs (1991).