DOI QR코드

DOI QR Code

Combustive Characteristics of Wood Specimens Treated with Alkylenediaminoalkyl-Bis-Phosphonic Acids

알킬렌디아미노알킬-비스-포스폰산으로 처리된 목재의 연소특성

  • Chung, Yeong-Jin (Dept. of Fire Protection Engineering, Kangwon National University)
  • 정영진 (강원대학교 소방방재공학과)
  • Received : 2013.10.19
  • Accepted : 2013.12.06
  • Published : 2013.12.31

Abstract

This study was performed to test the combustive properties of Pinus rigida specimens treated with piperazinomethyl-bis-phosphonic acid (PIPEABP), methylpiperazinomethyl-bis-phosphonic acid (MPIPEABP), and N,N-dimethylethylene-diaminomethyl-bis-phosphonic acid (MDEDAP). Pinus rigida Plates were painted in three times with 15 wt% alkylenedi-aminoalkyl-bis-phosphonic acid solutions at the room temperature. After drying specimen treated with chemicals, combustive properties were examined by the cone calorimeter (ISO 5660-1). It was indicated that the specimens treated with chemicals showed the later time to peak mass loss rate ($TMLR_{peak}$) = (315~420) s than that of virgin plate by reduc-ing the burning rate except for $TPMR_{peak}$ (280 s) treated with DMDAP. In adition, the specimens treated with chemicals showed both the higher total smoke release rate (TSRR) (407.3~902.0) $m^2/m^2$ and $CO_{mean}$ production (407.3~902.0) $m^2/m^2$ than those of virgin plate. Especially, for the specimens treated with PIPEABP, 1st-smoke production rate (1st-SPR) (0.1250~0.1297) g/s was lower than that of virgin plate, while the 2nd-SPR (0.183 g/s) was higher. Thus, It is supposed that the combustion-retardation properties were improved by the partial due to the treated alkylenediaminoalkyl-bis-phos-phonic acids in the virgin Pinus rigida.

이 연구에서는 피페라지노메틸-비스-포스폰산(PIPEABP), 메틸피페라지노메틸-비스-포스폰산(MPIPEABP), N,N-디메틸렌디아미노메틸-비스-포스폰산(MDEDAP)으로 처리된 리기다 소나무의 연소성을 시험하였다. 15 wt%의 알킬렌디아미노알킬-비스-포스폰산 수용액으로 리기다 소나무에 3회 붓칠하여 실온에서 건조시킨 후, 콘칼로리미터(ISO 5660-1)를 이용하여 그의 연소성을 시험하였다. 그 결과, 알킬렌디아미노알킬-비스-포스폰산으로 처리한 시험편은 비스-디메틸아미노메틸 포스피닉산(DMDAP) (280 s)을 제외하고, 연소속도 감소에 의하여 무처리한 시험편에 비해 최대질량감소율 도달시간 ($TMLR_{peak}$) = (315~420) s을 지연시켰다. 그리고 그의 화학 합성물로 처리한 시험편은 무처리한 시험편보다 높은 연기발생률(TSRR) = (407.3~902.0) $m^2/m^2$과 높은 $CO_{mean}$ (0.0765~0.0832) kg/kg 값을 보였다. 특별히 피페라지노메틸-비스-포스폰산으로 처리한 시험편에 대하여 1차 연기발생속도(1st-SPR) = 0.0124 g/s 피이크는 무처리한 시험편에 비하여 낮았다. 이에 반하여 2차 연기발생속도(2nd-SPR) = 0.183 g/s 피이크는 높았다. 따라서 알킬렌디아미노알킬-비스-포스폰산으로 처리한 시험편은 처리하지 않은 시험편에 비하여 그의 연소 억제성을 부분적으로 향상시켰다.

Keywords

References

  1. E. Baysal, M. Altinok, M. Colak, S.K. Ozaki and H. Toker, "Fire Resistance of Douglas Fir (Psedotsuga menzieesi) Treated With Borates and Natural Extractives", Bioresour. Technol., Vol. 98, No. 5, pp. 1101-1105 (2007). https://doi.org/10.1016/j.biortech.2006.04.023
  2. O. Grexa, E. Horvathova, O. Besinova and P. Lehocky, "Falme Retardant Treated Plyood", Polym. Degrad. Stab., Vol. 64, No. 3, pp. 529-533 (1999). https://doi.org/10.1016/S0141-3910(98)00152-9
  3. Y. J. Chung, "Comparison of Combustion Proprties of Native Wood Species Used for Fire Pots in Korea", J. Ind. Eng. Chem., Vol. 16, No. 1, pp. 15-19 (2010). https://doi.org/10.1016/j.jiec.2010.01.031
  4. Article 43 of Building Code, Article 61 of Enforcement Ordinance, "The Internal Finish Material of the Building" (2004).
  5. Article 12 of Firefighting Basic Law, Article 20 of Decree, "The Subject Merchandise Flame and Flame Performance Standard" (2005).
  6. P. W. Lee and J. H. Kwon, "Effects of the Treated Chemicals on Fire Retardancy of Fire Retardant Treated Particle Boards", Mogjae-Gonghak, Vol. 11, No. 5, pp. 16-22 (1983).
  7. T. S. Mcknight, "The Hygroscopicity of Wood Treated With Fire-Retarding Compounds", Fore. Prod. Res. Branch, Dep. of Forestry, Canada. Report No. 190 (1962).
  8. J. C. Middleton, S. M. Dragoner and F. T. Winters, Jr. "An Evaluation of Borates and Other Inorganic Salts as Fire Retardants for Wood Products", Fore. Prod. J. Vol. 15, No. 12, pp. 463-467 (1965).
  9. I. S. Goldstein and W. A. Dreher, "A. Non-Hygroscopic Fire Retardant Treatment for Wood", Froe. Prod. J., Vol. 11, No. 5, pp. 235-237 (1961).
  10. R. Kozlowski and M. Hewig, "1st Int Conf. Progress in Flame Retardancy and Flammability Testing", Pozman, Poland, Institute of Natural Fibres (1995).
  11. R. Stevens, S. E. Daan, R. Bezemer and A. Kranenbarg, "The Strucure-Activity Relationship of Retardant Phosphorus Compounds in Wood", Polym. Degrad. Stab., Vol. 91, No. 4, pp. 832-841 (2006). https://doi.org/10.1016/j.polymdegradstab.2005.06.014
  12. Y. J. Chung, Y. H. Kim and S. B. Kim, "Flame Retardant Properties of Polyurethane Produced by the Addition of Phosphorous Containing Polyurethane Oligomers (II)", J. Ind. Eng., Vol. 15, No. 6, pp. 888-893 (2009). https://doi.org/10.1016/j.jiec.2009.09.018
  13. Y. J. Chung, "Flame Retardancy of Veneers Treated by Ammonium Salts", J. Korean Ind. Eng. Chem., Vol. 18, No. 3, pp. 251-255 (2007).
  14. M. L. Hardy, "Regulatory Status and Environmental Properties of Brominated Flame Retardants Undergoing Risk Assessment in the EU: DBDPO, OBDPO, PeBDPO and HBCD", Polym. Degrad. Stab., Vol. 64, No. 3, pp. 545-556 (1999). https://doi.org/10.1016/S0141-3910(98)00141-4
  15. Y. Tanaka, "Epoxy Resin Chemistry and Technology", Marcel Dekker, New York (1988).
  16. V. Babrauskas, "New Technology to Reduce Fire Losses and Costs", Eds. S. J. Grayson and D. A. Smith, Elsevier Appied Science Publisher, London, UK. (1986).
  17. M. M. Hirschler, "Thermal Decomposition and Chemical Composition", 239, ACS Symposium Series 797 (2001).
  18. ISO 5660-1, "Reaction-to-Fire Tests-Heat Release, Smoke Production and Mass Loss Rate - Part 1: Heat Release Rate (Cone Calorimeter Method)", Genever (2002).
  19. Korean Patent, "Organic Phosphorus-Nitrogen Compounds, Manufacturing Method and Compositions of Flame Retardants Containing Organic Phosphorus-Nitrogen Compounds", No. 10-2011-0034978 (2011).
  20. Y. J. Chung and E. Jin, "Synthesis of Alkylenediaminoalkyl-Bis-Phosphonic Acid Derivatives", J. of Korean Oil Chemist's Soc., Vol. 30, No. 1, pp. 1-8 (2013). https://doi.org/10.12925/jkocs.2013.30.1.001
  21. Y. J. Chung and E. Jin, "Synthesis of Dialkylaminoalkyl Phosphonic Acid and Bis(dialkylaminoalkyl) Phosphinic Acid Derivatives", Appl. Chem. Eng., Vol. 23, No. 6, pp. 383-387 (2012).
  22. Cischem Com, "Flame Retardants", Chischem. Com. CO., Ltd. (2009).
  23. Y. J. Chung and E. Jin, "Combustive Characteristics of Pinus rigida Treated with Bis-(dialkylaminoalkyl) Phosphinic Acid Derivatives", Appl. Chem. Eng., Vol. 24, No. 6, pp. 633-638 (2013). https://doi.org/10.14478/ace.2013.1087
  24. W. T. Simpso, "Drying and Control of Moisture Content and Dimensional Changes", Chap. 12, Wood Handbook-Wood as an Engineering Material, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsin, U.S.A. pp. 1-21 (1987).
  25. M. Delichatsios, B. Paroz and A. Bhargava, "Flammability Properties for Charring Materials", Fire Safety Journal, Vol. 38, No. 3, pp. 219-228 (2003). https://doi.org/10.1016/S0379-7112(02)00080-2
  26. M. J. Spearpoint and G. J. Quintiere, "Predicting the Burning of Wood Using an Integral Model", Combustion and Flame, Vol. 123, No. 3, pp. 308-324 (2000). https://doi.org/10.1016/S0010-2180(00)00162-0
  27. V. Babrauskas, "The SFPE Handbook of Fire Protection Engineering", Fourth Ed., National Fire Protection Association, Massatusetts, U.S.A. (2008).
  28. J. G. Quintire, "Principles of Fire Behavior", Chap. 5, Cengage Learning, Delmar, U.S.A. (1998).
  29. A. P. Mourituz, Z. Mathys and A. G. Gibson, "Heat Release of Polymer Composites in Fire", Composites: Part A, Vol. 38, No. 7, pp. 1040-1054 (2005).
  30. S. Ishihara, "Smoke and Toxic Gases Produced During Fire", Wood Research and Technical Notes, Vol. 16, No. 5, pp. 49-62 (1981).