DOI QR코드

DOI QR Code

Radiation Effects on the Ignition and Flame Extinction of High-temperature Fuel

고온연료의 점화 및 화염 소화특성에 미치는 복사효과

  • Kim, Yu Jeong (Pukyong National University, Department of Safety Engineering) ;
  • Oh, Chang Bo (Pukyong National University, Department of Safety Engineering) ;
  • Choi, Byung Il (Korea Institute of Machinery and Materials, Department of Energy Plant Safety Technology) ;
  • Han, Yong Shik (Korea Institute of Machinery and Materials, Department of Energy Plant Safety Technology)
  • 김유정 (부경대학교 안전공학과) ;
  • 오창보 (부경대학교 안전공학과) ;
  • 최병일 (한국기계연구원 에너지플랜트안전연구실) ;
  • 한용식 (한국기계연구원 에너지플랜트안전연구실)
  • Received : 2013.10.10
  • Accepted : 2013.12.06
  • Published : 2013.12.31

Abstract

The radiation effects on the auto-ignition and extinction characteristics of a non-premixed fuel-air counterflow field were numerically investigated. A detailed reaction mechanism of GRI-v3.0 was used for the calculation of chemical reactions and the optically-thin radiation model was adopted in the simulations. The flame-controlling continuation method was also used in the simulation to predict the auto-ignition point and extinction limits precisely. As a result, it was found that the maximum H radical concentration, $(Y_H)_{max}$, rather than the maximum temperature was suitable to understand the ignition and extinction behaviors. S-, C- and O-curves, which were well known from the previous theory, were identified by investigating the $(Y_H)_{max}$. The radiative heat loss fraction ($f_r$) and spatially-integrated heat release rate (IHRR) were introduced to grasp each extinction mechanism. It was also found that the $f_r$ was the highest at the radiative extinction limit. At the flame stretch extinction limit, the flame was extinguished due to the conductive heat loss which attributed to the high strain rate although the heat release rate was the highest. The radiation affected on the radiative extinction limit and auto-ignition point considerably, however the effect on the flame stretch extinction limit was negligible. A stable flame regime defined by the region between each extinction limit became wide with increasing the fuel temperature.

대향류 비예혼합 연료-공기 유동장에서 고온연료의 점화특성과 형성된 화염의 소화특성에 미치는 복사효과에 대해 수치계산을 통해 검토하였다. 화학반응의 계산을 위해 GRI-v3.0의 상세화학반응기구를 사용하였으며, 단열계산과 광학적으로 얇은 복사모델을 적용하여 계산을 수행하였다. 대향류 유동장의 점화와 소화점을 정확히 찾기 위하여 화염제어 연속계산법을 적용하였다. 결과를 통해 스트레인율 변화에 대해 최고 온도보다는 최고 H 라디칼 농도가 점화와 소화거동을 이해하는데 더 적합하다는 것을 확인하였다. 최고 H 라디칼 농도변화 거동을 통해 기존에 알려진 S-곡선, C-곡선 및 O-곡선 등을 확인하였다. 복사열손실 분율($f_r$)과 공간에 대해 적분된 열발생률(IHRR)을 통해 $f_r$이 가장 큰 점에서 복사효과에 의한 소화가 발생하였으며, 화염신장 소화점에서는 IHRR이 가장 높지만 화염에서의 전도에 의한 열손실로 인해 소화가 되는 것을 확인하였다. 복사는 화염신장 소화점에는 거의 영향이 없지만 복사 소화점과 점화점에는 큰 영향을 주는 것을 알 수 있었다. 또한 연료의 온도가 높아질수록 복사에 의한 소화점의 스트레인율과 화염신장에 의한 스트레인율 사이의 영역이 넓어지게 되어 화염 안정성이 향상되고 있음을 알 수 있었다.

Keywords

References

  1. D. T. Gottuk, M. J. Peatross, J. P. Farley and F. W. Williams, "The Development and Mitigation of Backdraft: A Real-scale Shipboard Study", Fire Safety Journal, Vol. 33, pp. 261-282 (1999). https://doi.org/10.1016/S0379-7112(99)00033-8
  2. C. M. Fleischmann, P. J. Pagni and R. B. Williamson, "Quantitative Backdraft Experiments", Fire Safety Science Proceedings of the Fourth International Symposium, pp. 337-348 (1994).
  3. W. G. Weng and W. C. Fan, "Critical Condition of Backdraft in Compartment Fires: A Reduced-scale Experimental Study", Journal of Loss Prevention in the Process Industries, Vol. 16, pp. 19-26 (2003). https://doi.org/10.1016/S0950-4230(02)00088-8
  4. W. G. Weng, W. C. Fan, L. Z. Yang, H. Song, Z. H. Deng, J. Qin, and G. X. Liao, "Experimental Study of Back-draft in a compartment with Openings of Different Geometries", Combustion and Flame, Vol. 132, pp. 709-714 (2003). https://doi.org/10.1016/S0010-2180(02)00521-7
  5. M. Nishioka, C. K. Law and T. Takeno, "A Flame-Controlling Continuation Method for Generating S-Curve Responses with Detailed Chemistry", Combustion and Flame, Vol. 104, pp. 328-342 (1996). https://doi.org/10.1016/0010-2180(95)00132-8
  6. A. E. Jutz, R. J. Kee, J. F. Grcar and F. M. Rupley, "OPPDIF : A Fortran Program for Computing Opposed-Flow Diffusion Flames", Sandia Report, SAND96-8243 (1997).
  7. J. S. T'ien, "Diffusion Flame Extinction at Small Stretch Rates: The Mechanism of Radiative Loss", Combustion and Flame, Vol. 65, pp. 31-34 (1986). https://doi.org/10.1016/0010-2180(86)90069-6
  8. C. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, V. Lissianski, G. P Smith, D. M. Golden, M. Frenklach and M. Goldenburg, http://www.me.berkeley.edu/gri_mech/ (1999).
  9. R. J. Kee, F. M. Rupley and J. A. Miller, "Chemkin-II: A Fortran Chemical Kinetic Package for the Analysis of Gas Phase Chemical Kinetics", Sandia Report, SAND89-8009B (1989).
  10. R. J. Kee, G, Dixon-Lewis, J. Warnatz, M. E. Coltrin and J. A. Miller, "A Fortran Computer Code Package for the Evaluation of Gas-Phase Multicomponent Transport Properties", Sandia Report, SAND86-8246 (1986).
  11. H. K. Chelliah, C. K. Law, T. Ueda, M. D. Smooke and F. A. Williams, "An Experimental and Theoretical Investigation of the Dilution, Pressure and Flow-Field Effects on the Extinction Condition of Methane-Air-Nitrogen Diffusion Flames", Proceedings of the Combustion Institute, Vol. 23, pp. 503-511 (1990).
  12. Y. Ju, H. Guo, K. Maruta and F. Liu, "On the Extinction Limit and Flammability Limit of Non-adiabatic Stretched Methane-air Premixed Flames", Journal of Fluid Mechanics, Vol. 342, pp. 315-334 (1997). https://doi.org/10.1017/S0022112097005636
  13. F. C. Frate, H. Bedir, C. J. Sung and J. S. T'ien, "On Flammability Limits of Dry CO/$O_2$ Opposed-jet Diffusion Flames", Proceedings of the Combustion Institute, Vol. 28, pp. 2047-2054 (2000).

Cited by

  1. Computational study of backdraft dynamics and the effects of initial conditions in a compartment vol.31, pp.2, 2017, https://doi.org/10.1007/s12206-017-0151-z