DOI QR코드

DOI QR Code

Effect of Phytogenic Feed Additives in Soybean Meal on In vitro Swine Fermentation for Odor Reduction and Bacterial Community Comparison

  • Alam, M.J. (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University) ;
  • Mamuad, L.L. (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University) ;
  • Kim, S.H. (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University) ;
  • Jeong, C.D. (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University) ;
  • Sung, H.G. (Adbiotech Co. Ltd.) ;
  • Cho, S.B. (Animal Environment Division, National Institute of Animal Science, RDA) ;
  • Jeon, C.O. (Research Center for Biomolecules and Biosystems, Department of Life Science, Chung-Ang University) ;
  • Lee, K. (Department of Animal Science, Ohio State University) ;
  • Lee, Sang Suk (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University)
  • Received : 2012.09.18
  • Accepted : 2012.11.05
  • Published : 2013.02.01

Abstract

The effect of different phytogenic feed additives on reducing odorous compounds in swine was investigated using in vitro fermentation and analyzed their microbial communities. Soybean meal (1%) added with 0.1% different phytogenic feed additives (FA) were in vitro fermented using swine fecal slurries and anaerobically incubated for 12 and 24 h. The phytogenic FAs used were red ginseng barn powder (Panax ginseng C. A. Meyer, FA1), persimmon leaf powder (Diospyros virginiana L., FA2), ginkgo leaf powder (Ginkgo biloba L., FA3), and oregano lippia seed oil extract (Lippia graveolens Kunth, OL, FA4). Total gas production, pH, ammonianitrogen ($NH_3$-N), hydrogen sulfide ($H_2S$), nitrite-nitrogen ($NO_2{^-}$-N), nitrate-nitrogen ($NO_3{^-}$-N), sulfate (${SO_4}^{--}$), volatile fatty acids (VFA) and other metabolites concentration were determined. Microbial communities were also analyzed using 16S rRNA DGGE. Results showed that the pH values on all treatments increased as incubation time became longer except for FA4 where it decreased. Moreover, FA4 incubated for 12 and 24 h was not detected in $NH_3$-N and $H_2S$. Addition of FAs decreased (p<0.05) propionate production but increased (p<0.05) the total VFA production. Ten 16S rRNA DGGE bands were identified which ranged from 96 to 100% identity which were mostly isolated from the intestine. Similarity index showed three clearly different clusters: I (FA2 and FA3), II (Con and FA1), and III (FA4). Dominant bands which were identified closest to Eubacterium limosum (ATCC 8486T), Uncultured bacterium clone PF6641 and Streptococcus lutetiensis (CIP 106849T) were present only in the FA4 treatment group and were not found in other groups. FA4 had a different bacterial diversity compared to control and other treatments and thus explains having lowest odorous compounds. Addition of FA4 to an enriched protein feed source for growing swine may effectively reduce odorous compounds which are typically associated with swine production.

Keywords

References

  1. Alam, M. J., C. D. Jeong, L. L. Mamuad, H. G. Sung, D. W. Kim, S. B. Cho, K. Lee, C. O. Jeon and S. S. Lee. 2012. Bacterial community dynamics during swine in vitro fermentation using starch as a substrate with different feed additives for odor reduction. Asian-Aust. J. Anim. Sci. 25:690-700. https://doi.org/10.5713/ajas.2011.11451
  2. Bailey, S. R., A. Rycroft and J. Elliott. 2002. Production of amines in equine cecal contents in an in vitro model of carbohydrate overload. J. Anim. Sci. 80:2656-2662.
  3. Bengtson, H. 2010. Easy to understand diagram of nutrient cycle. in The Importance of Nitrogen and the Nitrogen Cycle. L. Stonecypher, ed. Bright Hub, Inc. New York.
  4. Claesson, R., M.-B. Edlund, S. Persson and J. Carlsson. 1990. Production of volatile sulfur compounds by various Fusobacterium species. Oral Microbiol. Immunol. 5:137-142. https://doi.org/10.1111/j.1399-302X.1990.tb00411.x
  5. Duffy, C. F., G. F. Killeen, C. D. Connolly and R. F. Power. 2001. Effects of dietary supplementation with Yucca schidigera Roezl ex Ortgies and its saponin and non-saponin fractions on rat metabolism. J. Agric. Food Chem. 49:3408-3413. https://doi.org/10.1021/jf010149+
  6. Fakhoury, K. J., A. J. Heber, P. Shao and J. Q. Ni. 2000. Correlation of odor detection thresholds with concentrations of hydrogen sulfide, ammonia and trace gases emitted from swine manure. Pages 1-13. American Society of Agricultural Engineers, St Joseph.
  7. Felske, A., A. Wolterink, R. Van Lis and A. D. L. Akkermans. 1998. Phylogeny of the main bacterial 16S rRNA sequences in drentse a grassland soils (The Netherlands). Appl. Environ. Microbiol. 64:871-879.
  8. Gibson, G. R., J. H. Cummings and G. T. Macfarlane. 1988. Competition for hydrogen between sulphate-reducing bacteria and methanogenic bacteria from the human large intestine. J. Appl. Microbiol. 65:241-247. https://doi.org/10.1111/j.1365-2672.1988.tb01891.x
  9. Han, S.-K., S.-H. Kim and H.-S. Shin. 2005. UASB treatment of wastewater with VFA and alcohol generated during hydrogen fermentation of food waste. Process Biochem. 40:2897-2905. https://doi.org/10.1016/j.procbio.2005.01.005
  10. Hane, B. G., K. Jager and H. G. Drexler. 1993. The Pearson product-moment correlation coefficient is better suited for identification of DNA fingerprint profiles than band matching algorithms. Electrophoresis 14:967-972. https://doi.org/10.1002/elps.11501401154
  11. Hao, O. J., J. M. Chen, L. Huang and R. L. Buglass. 1996. Sulfate-reducing bacteria. Crit. Rev. Environ. Sci. Technol. 26:155-187. https://doi.org/10.1080/10643389609388489
  12. Hume, M. E., S. Clemente-Hernandez and E. O. Oviedo-Rondon. 2006. Effects of feed additives and mixed Eimeria species infection on intestinal microbial ecology of broilers. Poult. Sci. 85:2106-2111. https://doi.org/10.1093/ps/85.12.2106
  13. Jenkins, D. and L. L. Medsker. 1964. Brucine method for the determination of nitrate in ocean, estuarine, and fresh waters. Anal. Chem. 36:610-612. https://doi.org/10.1021/ac60209a016
  14. Jensen, M. T., R. P. Cox and B. B. Jensen. 1995. Microbial production of skatole in the hind gut of pigs given different diets and its relation to skatole deposition in backfat. Anim. Sci. 61:293-304. https://doi.org/10.1017/S1357729800013837
  15. Jensen, M. T. and L. L. Hansen. 2006. Feeding with chicory roots reduces the amount of odorous compounds in colon and rectal contents of pigs. Anim. Sci. 82:369-376.
  16. Kelly, D. P. 1982. Biochemistry of the chemolithotrophic oxidation of inorganic sulphur. Phil. Trans. R. Soc. London. B, Biological Sciences 298:499-528. https://doi.org/10.1098/rstb.1982.0094
  17. Kempen, T. A. V. 2001. Dietary adipic acid reduces ammonia emission from swine excreta. J. Anim. Sci. 79:2412-2417.
  18. Killeen, G. F., C. R. Connolly, G. A. Walsh, C. F. Duffy, D. R. Headon and R. F. Power. 1998. The effects of dietary supplementation with Yucca schidigera extract or fractions thereof on nitrogen metabolism and gastrointestinal fermentation processes in the rat. J. Sci. Food Agric. 76:91-99. https://doi.org/10.1002/(SICI)1097-0010(199801)76:1<91::AID-JSFA926>3.0.CO;2-H
  19. Kim, K.-Y., H.-J. Ko, H.-T. Kim, Y.-S. Kim, Y.-M. Roh, C.-M. Lee and C.-N. Kim. 2008. Odor reduction rate in the confinement pig building by spraying various additives. Bioresour. Technol. 99:8464-8469. https://doi.org/10.1016/j.biortech.2007.12.082
  20. Kolmert, A., P. Wikstrom and K. B. Hallberg. 2000. A fast and simple turbidimetric method for the determination of sulfate in sulfate-reducing bacterial cultures. J. Microbiol. Methods 41:179-184. https://doi.org/10.1016/S0167-7012(00)00154-8
  21. Konstantinov, S. R., W.-Y. Zhu, B. A. Williams, S. Tamminga, W. M. de Vos and A. D. L. Akkermans. 2003. Effect of fermentable carbohydrates on piglet faecal bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA. FEMS Microbiol. Ecol. 43:225-235. https://doi.org/10.1111/j.1574-6941.2003.tb01062.x
  22. Le, P. D., A. J. Aarnink, N. W. Ogink, P. M. Becker and M. W. Verstegen. 2005. Odour from animal production facilities: its relationship to diet. Nutr. Res. Rev. 18:3-30. https://doi.org/10.1079/NRR200592
  23. Macfarlane, S. and G. T. Macfarlane. 2003. Regulation of short-chain fatty acid production. Proc. Nutr. Soc. 62:67-72. https://doi.org/10.1079/PNS2002207
  24. Mackie, R. I., P. G. Stroot and V. H. Varel. 1998. Biochemical identification and biological origin of key odor components in livestock waste. J. Anim. Sci. 76:1331-1342.
  25. Mao, S. Y., G. Zhang and W. Y. Zhu. 2008. Effect of disodium fumarate on ruminal metabolism and rumen bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA. Anim. Feed Sci. Technol. 140:293-306. https://doi.org/10.1016/j.anifeedsci.2007.04.001
  26. Miner, J. R. 1977. Characterization of odors and other volatile emissions. Agric. Environ. 3:129-137. https://doi.org/10.1016/0304-1131(77)90004-2
  27. Muyzer, G., E. C. de Waal and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695-700.
  28. Muyzer, G. and K. Smalla. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek 73:127-141. https://doi.org/10.1023/A:1000669317571
  29. Naidu, A. S., X. Xie, D. A. Leumer, S. Harrison, M. J. Burrill and E. A. Fonda. 2002. Reduction of sulfide, ammonia compounds, and adhesion properties of Lactobacillus casei strain KE99 in vitro. Curr. Microbiol. 44:196-205. https://doi.org/10.1007/s00284-001-0040-6
  30. Nubel, U., B. Engelen, A. Felske, J. Snaidr, A. Wieshuber, R. I. Amann, W. Ludwig and H. Backhaus. 1996. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol. 178:5636-5643.
  31. Ozer, H., M. Sokmen, M. Gulluce, A. Adiguzel, F. Sahin, A. Sokmen, H. Kilic and O. Baris. 2007. Chemical composition and antimicrobial and antioxidant activities of the essential oil and methanol extract of Hippomarathrum microcarpum (Bieb.) from Turkey. J. Agric. Food Chem. 55:937-942. https://doi.org/10.1021/jf0624244
  32. Parker, J., E. O. Oviedo-Rondon, B. A. Clack, S. Clemente-Hernandez, J. Osborne, J. C. Remus, H. Kettunen, H. Makivuokko and E. M. Pierson. 2007. Enzymes as feed additive to aid in responses against Eimeria species in coccidia-vaccinated broilers fed corn-soybean meal diets with different proteinl levels. Poult. Sci. 86:643-653. https://doi.org/10.1093/ps/86.4.643
  33. Patra, A. K., D. N. Kamra and N. Agarwal. 2006. Effect of spices on rumen fermentation, methanogenesis and protozoa counts in in vitro gas production test. Int. Congr. Ser. 1293:176-179. https://doi.org/10.1016/j.ics.2006.01.025
  34. Risley, C. R., E. T. Kornegay, M. D. Lindemann, C. M. Wood and W. N. Eigel. 1992. Effect of feeding organic acids on selected intestinal content measurements at varying times postweaning in pigs. J. Anim. Sci. 70:196-206.
  35. Ritter, W. F. 1989. Odour control of livestock wastes: State-of-the-art in North America. J. Agric. Eng. Res. 42:51-62. https://doi.org/10.1016/0021-8634(89)90039-5
  36. Robinson, J. A., W. J. Smolenski, M. L. Ogilvie and J. P. Peters. 1989. In vitro total-gas, $CH_4$, $H_2$, volatile fatty acid, and lactate kinetics studies on luminal contents from the small intestine, cecum, and colon of the pig. Appl. Environ. Microbiol. 55:2460-2467.
  37. SAS. 2002. SAS/STAT. Statistical analysis systems for Windows. Release 9.1. SAS Institute Inc., Cary, NC, USA.
  38. Simpson, J. M., V. J. McCracken, B. A. White, H. R. Gaskins and R. I. Mackie. 1999. Application of denaturant gradient gel electrophoresis for the analysis of the porcine gastrointestinal microbiota. J. Microbiol. Methods 36:167-179. https://doi.org/10.1016/S0167-7012(99)00029-9
  39. Spoelstra, S. F. 1980. Origin of objectionable odorous components in piggery wastes and the possibility of applying indicator components for studying odour development. Agric. Environ. 5:241-260. https://doi.org/10.1016/0304-1131(80)90004-1
  40. Stackebrandt, E. and B. M. Goebel. 1994. Taxonomic Note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44:846-849. https://doi.org/10.1099/00207713-44-4-846
  41. Steiner, T. 2006. Managing gut health: Natural growth promoters as a key to animal performance. Nottingham University Press, Manor Farm, Main Street, Thrumpton Nottingham, NG11 0AX, United Kingdom.
  42. Tabaru, H., E. Kadota, H. Yamada, N. Sasaki and A. Takeuchi. 1988. Determination of volatile fatty acids and lactic acid in bovine plasma and ruminal fluid by high performance liquid chromatography. Japanese J. Vet. Sci. 50:1124-1126. https://doi.org/10.1292/jvms1939.50.1124
  43. Tannock, G. W. 1999. Probiotics: a critical review. Prebiotics. Horizon Scientific Press.
  44. van Beers-Schreurs, H. M. G., M. J. A. Nabuurs, L. Vellenga, H. J. K.-v. d. Valk, T. Wensing and H. J. Breukink. 1998. Weaning and the weanling diet influence the villous height and crypt depth in the small intestine of pigs and alter the concentrations of short-chain fatty acids in the large intestine and blood. J. Nutr. 128:947-953.
  45. Varel, V. H. and D. N. Miller. 2001. Plant-derived oils reduce pathogens and gaseous emissions from stored cattle waste. Appl. Environ. Microbiol. 67:1366-1370. https://doi.org/10.1128/AEM.67.3.1366-1370.2001
  46. Wang, J. F., Y. H. Zhu, D. F. Li, Z. Wang and B. B. Jensen. 2004. In vitro fermentation of various fiber and starch sources by pig fecal inocula. J. Anim. Sci. 82:2615-2622.
  47. Ward, B. B. 1996. Nitrification and ammonification in aquatic systems. Life Support Biosph. Sci. 3:25-29.
  48. Windisch, W., K. Schedle, C. Plitzner and A. Kroismayr. 2008. Use of phytogenic products as feed additives for swine and poultry. J. Anim. Sci. 86(14 suppl):E140-E148.
  49. Zhu, W.-Y., B. A. Williams, S. R. Konstantinov, S. Tamminga, W. M. De Vos and A. D. L. Akkermans. 2003. Analysis of 16S rDNA reveals bacterial shift during in vitro fermentation of fermentable carbohydrate using piglet faeces as inoculum. Anaerobe 9:175-180. https://doi.org/10.1016/S1075-9964(03)00083-0
  50. Zoetendal, E. G., A. D. L. Akkermans and W. M. De Vos. 1998. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microbiol. 64:3854-3859.

Cited by

  1. Optimization of Chinese Chive Juice as a Functional Feed Additive vol.10, pp.18, 2020, https://doi.org/10.3390/app10186194
  2. Effect of mixture of herbal plants on ruminal fermentation, degradability and gas production vol.43, pp.None, 2021, https://doi.org/10.4025/actascianimsci.v43i1.48549