DOI QR코드

DOI QR Code

The Effect of Eisenia bicyclis Extracts on Bone Tissues in Ovariectomized Rats

대황 추출물이 갱년기 유도 흰쥐의 골 조직에 미치는 영향

  • 박용수 (신라대학교 식품영양학과) ;
  • 강민숙 (신라대학교 식품영양학과) ;
  • 김보경 (신라대학교 식품영양학과) ;
  • 김미향 (신라대학교 식품영양학과)
  • Received : 2012.11.06
  • Accepted : 2012.12.20
  • Published : 2013.01.31

Abstract

Menopause is often associated with several chronic diseases, including osteoporosis, cardiovascular disease, and obesity. In this study, we investigated the ability of Eisenia bicyclis (EB) to prevent bone loss in ovariectomized rats, a model for postmenopausal osteoporosis. Extracts from EB obtained using ethanol or hot water were analyzed for total polyphenol content and osteoporosis effects in vivo. Total polyphenol content was higher with extraction by hot water compared to ethanol extraction. Fifty 8-week-old female Sprague-Dawley rats were randomly assigned to four groups: the group were sham-operated rats (SHAM), ovariectomized rats (OVX-CON), and ovariectomized rats that were treated with EB at 50 mg/kg body weight (OVX-EB50) and 200 mg/kg body weight (OVX-EB200), respectively. The diets were fed to rats for 6 weeks after their operation. We found that the alkaline phosphatase (ALP) activity was lower in the EB extract group compared to the OVX-CON group. Collagen and pyridinoline content, in bone and cartilage, were reduced by ovariectomy, but the supplemented EB extract groups exhibited higher concentrations in their bones. These results suggest that EB can be used for the industrial development of foods with therapeutic functions.

갱년기 여성에는 여러 폐경 증후들이 나타나는데, 특히 estrogen의 감소로 인하여 급격한 골 소실로 골다공증의 위험성이 높아 이에 대한 예방 및 치료에 대한 연구가 활발히 이루어지고 있다. 본 연구에서는 갈조류인 대황 에탄올 추출물을 시료로 하여 in vivo 실험을 통하여 갱년기 장애 시 나타날 수 있는 골 손실 개선효과를 검토하기 위하여 골 형성 지표인 alkaline phosphatase(ALP) 활성, 결합조직 중의 콜라겐 함량 및 pyridinoline 함량을 측정하였다. 폴리페놀 함량이 높은 추출물을 이용하는 것이 estrogen의 활성이 높을 것으로 예상되어, 대황의 열수와 에탄올 두 용매를 이용하여 추출한 결과 총 폴리페놀 함량은 에탄올 추출에서 더 높은 것으로 나타나, 동물 실험의 시료로 사용하였다. ALP는 폐경 시 estrogen의 결핍으로 인하여 골 전환이 증가하므로 골 형성의 지표로써 널리 사용되고 있다. 난소절제 시 estrogen 결핍으로 bone turnover가 증가되어 비 난소절제군에 비해 혈장 중의 ALP 활성이 증가되었으나, 난소 절제 후 대황 추출물을 투여한 군에서는 그 활성이 유의적으로 감소하는 경향이 나타났다. 이것은 난소절제 후 estrogen의 분비가 감소되는데 반해 대황 추출물이 estrogen 대체 작용을 함으로써 난소절제로 인한 골 손실 정도를 완화시킨 것으로 추측되어진다. 대황 추출물이 골 손실 회복에 미치는 영향을 검토하기 위해 연골 및 골 조직의 콜라겐 함량 및 콜라겐 성숙가교인 pyridinoline 함량을 측정하였다. 연골 및 골조직의 경우 비 난소절제군인 SHAM군에 비해 난소절제군인 OVX-CON군의 콜라겐 및 pyridinoline 함량이 유의적으로 감소하여, 난소절제로 인한 estrogen 결핍으로 그 생성량이 감소한 것으로 나타났다. 대황 추출물 투여에 의한 영향을 검토한 결과, 연골조직의 콜라겐 함량은 200 mg/kg/day 투여한 OVX-EB200군의 경우 대조군인 OVX-CON군에 비해 증가하는 경향을 나타내었으나 유의적인 수준은 아니었다. 반면 골 조직의 콜라겐 함량의 경우, 난소를 절제한 후 대황 추출물을 50 mg/kg/day 투여한 OVX-EB50군에서 대조군에 비해 콜라겐 함량이 증가하는 경향이 나타났으며, 200 mg/kg/day 투여한 OVX-EB200군의 경우 유의적으로 증가하는 결과가 나타났다. 또한 콜라겐 성숙가교인 pyridinoline 함량을 HPLC로 분석한 결과, 골 조직의 pyridinoline 함량이 난소절제 후 감소하였으나, 대황 추출물을 투여한 군(OVX-EB50)에서 대조군인 OVX-CON군과 비교하여 증가하는 결과가 나타났다. 이상의 실험 결과는 estrogen 부족 시 일어날 수 있는 골 손실에 대한 예방 소재로써 갈조류인 대황의 활용 가능성을 시사하고 있으며, 이를 활용한 기능성 소재 개발도 가능할 것으로 기대된다.

Keywords

References

  1. Johnston CC Jr, Hui SI, Witt RM, Appledorn R, Baker RS, Longcope C. 1985. Easex steroids. J Clin Endocrinol Metab 61: 905-911. https://doi.org/10.1210/jcem-61-5-905
  2. Richelson LS, Wahner HW, Melton LJ 3rd, Riggs BL. 1984. Relative contributions of aging and estrogen deficiency to postmenopausal bone loss. N Engl J Med 311: 1273-1275. https://doi.org/10.1056/NEJM198411153112002
  3. Smith DM, Nance WE, Kang KW, Chrustian JC, Johnstone CC Jr. 1973. Genetic factors in determining bone mass. J Clin Invest 52: 2800-2808. https://doi.org/10.1172/JCI107476
  4. Kim SY, Chang SY, Oh HJ. 1997. Comparison of bone mineral density and lipid profiles in pre and postmenopausal women. J Korean Acad Fam Med 18: 910-917.
  5. Kimble RB, Vannice JL, Bloedowl DC, Thompson RC, Hopfer W, Kung VT, Brownfield C, Pacifici R. 1994. Interleukin-1 receptor antagonist decreases bone loss and bone resorption in ovariectomized rats. J Clin Invest 93: 1959-1967. https://doi.org/10.1172/JCI117187
  6. Dempster DW, Birchman R, Xu R, Lindsay R, Shen V. 1995. Temporal changes in cancellous bone structure of rats immediately after ovariectomy. Bone 16: 157-161. https://doi.org/10.1016/8756-3282(95)80027-N
  7. Fujimoto D, Hirama M, Iwa T. 1982. Histidinoalanine, a new crosslinking amino acid, in calcified tissue collagen. Biochem Biophys Res Commun 104: 1102-1106. https://doi.org/10.1016/0006-291X(82)91363-8
  8. Kim MH, Otsuka M, Arakawa N. 1994. Age-related changes in the pyridinoline content of guinea pigs cartilage and achilles tendon collagen. J Nutr Sci Vitaminol (Tokyo) 40:95-103. https://doi.org/10.3177/jnsv.40.95
  9. Kuboki Y, Mechanic GL. 1982. Comparative molecular distribution of cross-links in bone and dentin collagen. Structure- function relationships. Calcif Tissue Int 34: 306-308. https://doi.org/10.1007/BF02411256
  10. Robins SP, Bailey AJ. 1977. The chemistry of the collagen cross-links. Characterization of the products of reduction of skin, tendon and bone with sodium cyanoborohydride. Biochem J 163: 339-346. https://doi.org/10.1042/bj1630339
  11. Seigel RC. 1976. Collagen cross-linking. Synthesis of collagen cross-links in vitro with highly purified lysyl oxidase. J Biol Chem 251: 5786-5792.
  12. Noda M, Roodon GA. 1989. Transcriptional regulation of osteopontin production in rat osteoblast-like cells by parathyroid hormone. J Cell Biol 108: 713-718. https://doi.org/10.1083/jcb.108.2.713
  13. Ninomiya Y, Showater AM, Olsen BR. 1984. The role of extracellular matrix in development. Alan R Liss Inc., New York, NY, USA. p 225.
  14. Schiele F, Henny J, Hitz J, Petitclerc C, Gueguen R, Siest G. 1983. Total bone and liver alkaline phosphatases in plasma: biological variations and reference limits. Clin Chem 29: 634-641.
  15. Raisz LG. 1988. Local and systemic factors in the pathogenisis of osteoporosis. N Engl J Med 318: 818-828. https://doi.org/10.1056/NEJM198803313181305
  16. Sung JH, Ha S, Im MH, Im JG, Kang KS. 2002. Seaweed and health. In Foods and Health. Hyungseol Press Co., Seoul, Korea. p 190.
  17. So MJ, Kim BK, Choi MJ, Kim KY, Rhee SH, Cho EJ. 2007. Protective activity of fucoidan and alginic acid against free radical-induced oxidative stress under in vitro and cellular system. J Food Sci Nutr 12: 191-196. https://doi.org/10.3746/JFN.2007.12.4.191
  18. Hang D, Choi HS, Kang SC, Kim KR, Sohn ES, Kim MH, Pyo S, Son E. 2005. Effects of fucoidan on NO production and phagocytosis of macrophages and the proliferation of neuron cells. J Food Sci Nutr 10: 344-348. https://doi.org/10.3746/jfn.2005.10.4.344
  19. Haroun-Bouhedja F, Ellouali M, Sinquin C, Boisson-Vidal C. 2000. Relationship between sulfate groups and biological activities of fucans. Thromb Res 100: 453-459. https://doi.org/10.1016/S0049-3848(00)00338-8
  20. Colliec S, Fischer AM, Tapon-Bretaudiere J, Boisson C, Durand P, Jozefonvicz J. 1991. Anticoagulant properties of a fucoidan fraction. Thromb Res 64: 143-154. https://doi.org/10.1016/0049-3848(91)90114-C
  21. Kang JW. 1968. Marine algae. In I llustrated encyclopedia of fauna & flora of Korea. Ministry of Education. Vol 8, p 148-151.
  22. Jang YH, Choi SW, Cho SH. 2008. Effect of Eisenia bicyclis and its pill on serum status in rats fed high fat diet. Korean J Nutr 41: 5-12.
  23. Kim YM, Han CK, Bang SJ, Park JH. 2006. Effects of laminaran from Eisenia bicyclis on serum lipids in rats fed high cholesterol diet. J Korean Soc Food Sci Nutr 35: 841-846. https://doi.org/10.3746/jkfn.2006.35.7.841
  24. Cahyana AH, Shoto Y, Kinoshita Y. 1992. Pyropheophytin a as an antioxidative substance from the marine alga, Arame (Eisenia bicyclis). Biosci Biotech Biochem 56: 1533-1535. https://doi.org/10.1271/bbb.56.1533
  25. AOAC. 2005. Official Method of Analysis. 18th ed. Association of Official Analytical Chemists, Washington, DC, USA. Vol 45, p 21-22.
  26. Woessner JF Jr. 1961. The determination of hydroxyproline in tissue and protein sample containing small proportion of this imino acid. Arch Biochem Biophys 93: 440-447. https://doi.org/10.1016/0003-9861(61)90291-0
  27. Arakawa N, Kim M, Otsuka M. 1992. An improved highperformance liquid chromatographic assay for the determination of pyridinoline in connective tissues. J Nutr Sci Vitaminol (Tokyo) 38: 375-380.
  28. Lee S, Jang MK, Kim NY, Jang HJ, Lee DG, Kim M, Kim YY, Kim SG, Yoo BH, Lee SH. 2010. Verification of the fractions with strong estrogenic activities from brown algae. J Life Sci 20: 1807-1811. https://doi.org/10.5352/JLS.2010.20.12.1807
  29. Wronski TJ, Cintron M, Dann LM. 1988. Temporal relationship between bone loss and increased bone turnover in ovariectomized rats. Calcif Tissue Int 43: 179-183. https://doi.org/10.1007/BF02571317
  30. Abe T, Chow JM, Lean JM, Chambers TJ. 1993. Estrogen does not restore bone lost after ovariectomy in the rat. J Bone Miner Res 8: 831-838.
  31. Jeong SH, Lee HH, Han MY, Ryu CY, Yoon MC. 2002. Effects of fenofibrate on body weight and lipid metabolism in female mice. Journal of the Institute of Natural Science, Mokwon University 11: 27-32.
  32. Gale SK, Sclafani A. 1977. Comparison of ovarian and hypothalamic obesity syndromes in the female rat: effect of diet palatability on food intake and body weight. J Comp Physiol Psychol 91: 381-392. https://doi.org/10.1037/h0077328
  33. Lee SS, Park Yoon JH. 1989. Long-term effect of ovariectomy on body composition. Korean J Nutr 22: 102-107.
  34. Park WD, Hwang JS, Hur JW, Ahn SH, Park SK, Kwak CS. 1999. Activities of $\alpha$-D-mannosidase and $\beta$-D-mannosidase in patients with liver diseases. Korean J Gastroenterol 33: 211-221.
  35. Riis BJ. 1993. Biochemical markers of bone turnover. II: Diagnosis prophylaxis, and treatment of osteoporosis. Am J Med 95: 17S-21S. https://doi.org/10.1016/0002-9343(93)90376-Z
  36. Kim IG, Kim SB, Kim JG, Kim KC, Chun KC, Park HK, Lee KS. 1993. Serum enzymes as indicators of radiation exposure in rat. J Radiation Protection 18(2): 37-44.
  37. Mcconkey B, Fraser GM, Bligh AS, Whiteley H. 1963. Transparent skin and osteoporosis. Lancet 281: 693-695. https://doi.org/10.1016/S0140-6736(63)91448-X
  38. Odell WD, Heath H 3rd. 1993. Osteoporosis pathophysiology, prevention, diagnosis, and treatment. Dis Mon 39:789-867.
  39. Clark AP, Schuttinga JA. 1992. Targeted estrogen/progesterone replacement therapy for osteoporosis: calculation of health care cost savings. Osteoporos Int 2: 195-200. https://doi.org/10.1007/BF01623926
  40. Tiki ML, Allison GT, Naik K, Karry SK. 2003. Malondialdehyde oxidation of cartilage collagen by chondrocytes. Osteoarthritis Cartilage 11: 159-166. https://doi.org/10.1016/S1063-4584(02)00348-5
  41. Holland EF, Studd JW, Mansell JP, Leather AT, Bailey AJ. 1994. Changes in collagen composition and cross-links in bone and skin of osteoporotic postmenopausal women treated with percutaneous estradiol implants. Obstet Gynecol 83:180-183.

Cited by

  1. Effects of aPueraria lobata-root based combination supplement containingRehmannia glutinosaand aerobic exercise on improvement of metabolic dysfunctions in ovariectomized rats vol.48, pp.2, 2015, https://doi.org/10.4163/jnh.2015.48.2.133
  2. Effects of Colpomenia sinuosa Extract on Serum Lipid Level and Bone Formation in Ovariectomized Rats vol.45, pp.4, 2016, https://doi.org/10.3746/jkfn.2016.45.4.492
  3. 스테비아 잎 추출물을 첨가한 그릭 요거트의 항산화 활성 변화 vol.34, pp.4, 2013, https://doi.org/10.22424/jmsb.2016.34.4.263
  4. 골다공증의 한약 치료 효과: 국내 및 국외 동물 실험 및 임상 연구 논문에 대한 문헌 고찰 vol.31, pp.3, 2021, https://doi.org/10.18325/jkmr.2021.31.3.31