DOI QR코드

DOI QR Code

Effect of the Deposition Time onto Structural Properties of Cu2ZnSnS4 Thin Films Deposited by Pulsed Laser Deposition

펄스 레이저 증착법으로 제작한 Cu2ZnSnS4 박막의 구조 특성 변화에 대한 증착 시간 효과

  • Byeon, Mirang (Department of Materials Science and Engineering, Pusan National University) ;
  • Bae, Jong-Seong (Busan Center, Korea Basic Science Institute) ;
  • Hong, Tae-Eun (Busan Center, Korea Basic Science Institute) ;
  • Jeong, Euh-Duck (Busan Center, Korea Basic Science Institute) ;
  • Kim, Shinho (Department of Materials Science and Engineering, Pusan National University) ;
  • Kim, Yangdo (Department of Materials Science and Engineering, Pusan National University)
  • 변미랑 (부산대학교 재료공학부) ;
  • 배종성 (한국기초과학지원연구원 부산센터) ;
  • 홍태은 (한국기초과학지원연구원 부산센터) ;
  • 정의덕 (한국기초과학지원연구원 부산센터) ;
  • 김신호 (부산대학교 재료공학부) ;
  • 김양도 (부산대학교 재료공학부)
  • Received : 2012.10.04
  • Accepted : 2012.11.08
  • Published : 2013.01.27

Abstract

The $Cu_2ZnSnS_4$ (CZTS) thin film solar cell is a candidate next generation thin film solar cell. For the application of an absorption layer in solar cells, CZTS thin films were deposited by pulsed laser deposition (PLD) at substrate temperature of $300^{\circ}C$ without post annealing process. Deposition time was carefully adjusted as the main experimental variable. Regardless of deposition time, single phase CZTS thin films are obtained with no existence of secondary phases. Irregularly-shaped grains are densely formed on the surface of CZTS thin films. With increasing deposition time, the grain size increases and the thickness of the CZTS thin films increases from 0.16 to $1{\mu}m$. The variation of the surface morphology and thickness of the CZTS thin films depends on the deposition time. The stoichiometry of all CZTS thin films shows a Cu-rich and S-poor state. Sn content gradually increases as deposition time increases. Secondary ion mass spectrometry was carried out to evaluate the elemental depth distribution in CZTS thin films. The optimal deposition time to grow CZTS thin films is 150 min. In this study, we show the effect of deposition time on the structural properties of CZTS thin film deposited on soda lime glass (SLG) substrate using PLD. We present a comprehensive evaluation of CZTS thin films.

Keywords

References

  1. I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To and R. Noufi, Progress in Photovoltaics: Research and Applications, 16, 235 (2008). https://doi.org/10.1002/pip.822
  2. H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W. S. Maw, T. Fukano, T. Ito and T. Motohiro, Appl. Phys. Express, 1, 041201 (2008). https://doi.org/10.1143/APEX.1.041201
  3. K. Ito and T. Nakazawa, Jpn. J. Appl. Phys., 27, 2094 (1988). https://doi.org/10.1143/JJAP.27.2094
  4. T. M. Friedlmeier, N. Wieser, T. Walter, H. Dittrich and H. W. Schock, in Proceedings of the 14th European Photovoltaic Solar Energy Conference(Barcelona, Spain, June 1997) p. 1242.
  5. H. Katagiri, N. Ishigaki, T. Ishida and K. Saito, Jpn. J. Appl. Phys., 40, 500 (2001). https://doi.org/10.1143/JJAP.40.500
  6. S. C. Riha, B. A. Parkinson and A. L. Prieto, J. Am. Chem. Soc., 131, 12054 (2009). https://doi.org/10.1021/ja9044168
  7. N. Nakayama and K. Ito, Appl. Surf. Sci., 92, 171 (1996). https://doi.org/10.1016/0169-4332(95)00225-1
  8. B. S. Pawar, S. M. Pawar, K. V. Gurav, S. W. Shin, J. Y. Lee, S. S. Kolekar and J. H. Kim, ISRN Renewable Energy, 2011, 934575 (2011). doi:10.5402/2011/934575.
  9. T. Tanaka, D. Kawasaki, M. Nishio, Q. Guo and H. Ogawa, Phys. Status Solidi C, 3, 2844 (2006). https://doi.org/10.1002/pssc.200669631
  10. K. Jimbo, R. Kimura, T. Kamimura, S. Yamada, W. S. Maw, H. Araki, K. Oishi and H. Katagiri, Thin Solid Films, 515, 5997 (2007). https://doi.org/10.1016/j.tsf.2006.12.103
  11. L. Sun, J. He, H. Kong, F. Yue, P. Yang and J. Chu, Sol. Energy Mater. Sol. Cells, 95, 2907 (2011). https://doi.org/10.1016/j.solmat.2011.06.026
  12. K. Moriya, K. Tanaka and H. Uchiki, Jpn. J. Appl. Phys., 47, 602 (2008). https://doi.org/10.1143/JJAP.47.602
  13. S. M. Pawar, A. V. Moholkar, I. K. Kim, S. W. Shin, J. H. Moon, J. I. Rhee and J. H. Kim, Curr. Appl. Phys., 10, 565 (2010). https://doi.org/10.1016/j.cap.2009.07.023
  14. D. B. Chrisey and G. K. Hubler (eds), Pulsed laser deposition of thin films, 1st ed., p. 199-225, John Wiley and Sons, New York, USA (1994).
  15. J. Krustok, R. Josepson, M. Danilson and D. Meissner, Sol. Energy, 84, 379 (2010). https://doi.org/10.1016/j.solener.2009.09.011
  16. B. D. Cullity and S. R. Stock (eds), Elements of X-ray Diffraction, 3rd ed., p. 167-171, Prentice Hall, Inc., New Jersey, USA (2001).
  17. K. Tanaka, N. Moritake and H. Uchiki, Sol. Energy Mater. Sol. Cells, 91, 1199 (2007). https://doi.org/10.1016/j.solmat.2007.04.012
  18. R. K. Singh and J. Narayan, Phys. Rev B, 41, 8843 (1990). https://doi.org/10.1103/PhysRevB.41.8843
  19. R. K. Singh, O. W. Holland and J. Narayan, J. Appl. Phys., 68, 233 (1990). https://doi.org/10.1063/1.347123
  20. T. Prabhakar and N. Jampana, Sol. Energy Mater. Sol. Cells, 95, 1001 (2011). https://doi.org/10.1016/j.solmat.2010.12.012
  21. M. Ruckh, D. Schmid, M. Kaiser, R. Schäffler, T. Walter and H. W. Schock, Sol. Energy Mater. Sol. Cells, 41, 335 (1996). https://doi.org/10.1016/0927-0248(95)00105-0
  22. T. J. Park, D. H. Shin, B. T. Ahn and J. H. Yun, Kor. J. Mater Res., 19, 452 (2009) (in Korean). https://doi.org/10.3740/MRSK.2009.19.8.452