DOI QR코드

DOI QR Code

Microstructural Evolution of Ultrafine Grained AA1050/AA6061 Complex Aluminum Alloy Sheet with ARB Process

ARB공정에 따른 초미세립 AA1050/AA6061 복합알루미늄 합금 판재의 미세조직 발달

  • Lee, Seong-Hee (Department of Advanced Materials Science and Engineering, Mokpo National University)
  • 이성희 (국립목포대학교 신소재공학과)
  • Received : 2012.11.17
  • Accepted : 2012.12.11
  • Published : 2013.01.27

Abstract

The microstructural evolution of AA1050/AA6061 complex aluminum alloy, which is fabricated using an accumulative roll-bonding (ARB) process, with the proceeding of ARB, was investigated by electron back scatter diffraction (EBSD) analysis. The specimen after one cycle exhibited a deformed structure in which the grains were elongated to the rolling direction for all regions in the thickness direction. With the proceeding of the ARB, the grain became finer; the average grain size of the as received material was $45{\mu}m$; however, it became $6.3{\mu}m$ after one cycle, $1.5{\mu}m$ after three cycles, and $0.95{\mu}m$ after five cycles. The deviation of the grain size distribution of the ARB processed specimens decreased with increasing number of ARB cycles. The volume fraction of the high angle grain boundary also increased with the number of ARB cycles; it was 43.7% after one cycle, 62.7% after three cycles, and 65.6% after five cycles. On the other hand, the texture development was different depending on the regions and the materials. A shear texture component {001}<110> mainly developed in the surface region, while the rolling texture components {011}<211> and {112}<111> developed in the other regions. The difference of the texture between AA1050 and AA6061 was most obvious in the surface region; {001}<110> component mainly developed in AA1050 and {111}<110> component in AA6061.

Keywords

References

  1. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai and R. G. Hong, Scr. Mater., 39, 1221 (1998). https://doi.org/10.1016/S1359-6462(98)00302-9
  2. Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai, Acta Mater., 47, 579 (1999). https://doi.org/10.1016/S1359-6454(98)00365-6
  3. H. -W. Kim, S. -H. Jin and S. -B. Kang, J. Kor. Inst. Met. & Mater., 39, 546 (2001) (in Korean).
  4. S. H. Lee, Y. Saito, N. Tsuji, H. Utsunomiya and T. Sakai, Scr. Mater., 46, 281 (2002). https://doi.org/10.1016/S1359-6462(01)01239-8
  5. S. H. Lee, Y. Saito, T. Sakai and H. Utsunomiya, Mater. Sci. Eng. A, 325, 228 (2002). https://doi.org/10.1016/S0921-5093(01)01416-2
  6. S. H. Lee, J. Cho, S. Z. Han and C. Y. Lim, Kor. J. Mater. Res., 15(4), 240 (2005) (in Korean). https://doi.org/10.3740/MRSK.2005.15.4.240
  7. S. H. Lee, J. Cho, C. H. Lee, S. Z. Han and C. Y. Lim, Kor. J. Mater. Res., 15(9), 555 (2005) (in Korean). https://doi.org/10.3740/MRSK.2005.15.9.555
  8. S. H. Lee, S. Z. Han and C. Y. Lim, Kor. J. Mater. Res., 16(9), 592 (2006) (in Korean). https://doi.org/10.3740/MRSK.2006.16.9.592
  9. C. Y. Lim, S. Z. Han and S. H. Lee, Met. Mater. Int., 12(3), 225 (2006). https://doi.org/10.1007/BF03027535
  10. N. Takata, S. H. Lee and N. Tsuji, Mater. Lett., 63, 1757 (2009). https://doi.org/10.1016/j.matlet.2009.05.021
  11. S. H. Lee, J. Kor. Inst. Met. & Mater., 43, 786 (2005) (in Korean).
  12. M. Eizadjou, A. K. Talachi, H. D. Manesh, H. S. Shahabi and K. Janghorban, Compos. Sci. Tech., 68, 2003 (2008). https://doi.org/10.1016/j.compscitech.2008.02.029
  13. S. H. Lee and C. S. Kang, Kor. J. Met. Mater., 49(11), 893 (2011) (in Korean).
  14. S. H. Lee and G. J. Lee, Kor. J. Mater. Res., 21(12), 655 (2011) (in Korean). https://doi.org/10.3740/MRSK.2011.21.12.655