DOI QR코드

DOI QR Code

Buffeting Response Correction Method based on Dynamic Properties of Existing Cable-Stayed Bridge

공용 사장교의 동적특성을 반영하는 버페팅 응답보정법

  • 김병철 (서울시립대학교 토목공학과) ;
  • 임성순 (서울시립대학교 토목공학과)
  • Received : 2012.06.29
  • Accepted : 2012.11.14
  • Published : 2013.02.04

Abstract

According to design specifications for structural safety, a bridge in initial design step has been modelled to have larger self-weight, external loads and less stiffness than those of real one in service. Thereby measured buffeting responses of existing bridge show different distributions from those of the design model in design step. In order to obtain accurate buffeting responses of the in-site bridge, the analysis model needs to be modified by considering the measured natural frequencies. Until now, a Manual Tuning Method (MTM) has been widely used to obtain the Measurement-based Model(MBM) that has equal natural frequencies to the real bridge. However, since state variables can be selected randomly and its result is not apt to converge exact rapidly, MTM takes a lot of effort and elapsed time. This study presents Buffeting Response Correction Method (BRCM) to obtain more exact buffeting response above MTM. The BRCM is based on the idea the commonly used frequency domain buffeting analysis does not need all structural properties except mode shapes, natural frequencies and damping ratio. BRCM is used to improve each modal buffeting responses of the design model by substituting measured natural frequencies. The measured natural frequencies are determined from acceleration time-history in ordinary vibration of the real bridge. As illustrated examples, simple beam is applied to compare the results of BRCM with those of a assumed MBM by numerical simulation. Buffeting responses of BRCM are shown to be appropriate for those of in-site bridge and the difference is less than 3% between the responses of BRCM and MTM. Therefore, BRCM can calculate easily and conveniently the buffeting responses and improve effectively maintenance and management of in-site bridge than MTM.

설계를 위한 교량의 해석모델은 구조물의 안전성을 확보하기 위해 자중 및 외부하중은 되도록 크게, 구조물의 강성은 되도록 작게 평가하는 것이 일반적이다. 때문에 설계모델을 이용한 버페팅 응답은 실제 공용교량의 버페팅 응답과 차이를 나타낸다. 공용교량의 버페팅 응답을 정확하게 예측하기 위해서는 공용교량의 동적특성을 계측하여 해석모델이 계측값을 반영하도록 수정하여야 한다. 일반적으로, 실제교량과 동일한 고유진동수를 갖는 MBM(Measurement -based Model)을 구축하기 위해 설계모델의 다양한 물성치를 파라미터로 조정하며 계측된 고유진동수와 일치시키는 MTM(Manual Tuning Method)이 사용되고 있다. MTM은 파라미터의 초기치 설정에 따른 임의성이 높고 여러 수렴점을 가질 수 있어 분석에 상당한 노력이 소요된다. 본 연구는 버페팅해석에 널리 적용되고 있는 단일모드 주파수영역 해석법이 구조물의 모드형상, 고유진동수 및 감쇠비의 동적특성만을 이용하는 점에 착안하여 MTM과정 없이 설계모델의 버페팅 응답을 공용교량의 버페팅 응답으로 보정하는 BRCM(Buffeting Response Correction Method)을 제안하였다. BRCM은 설계모델의 모드형상 별 버페팅 응답을 공용교량의 고유진동수만으로 보정하는 방법이다. 공용교량의 고유진동수는 상시진동에 의한 계측 가속도로부터 산정하였다. BRCM의 적용성을 단순보 모델의 시간이력 버페팅해석을 수행하여 수치적으로 평가하였으며 공용교량모델을 이용한 버페팅해석결과, BRCM과 MTM의 응답 차이는 3% 이하로 나타났다. 공용교량의 실시간 계측시스템에 BRCM을 도입할 경우 사장교의 유지관리 효율성을 높일 수 있을 것으로 기대된다.

Keywords

References

  1. Kong Min Sik (2008) Buffeting Analysis of Suspension Bridges during Erection Sequences. Doctoral dissertation, University of Seoul.
  2. Kim Byeong Hwa, et al.(2008) Modal Parameter Extraction of Seohae Cable-stayed Bridge: I. Mode Shape. J. of Korean Society of Civil Engineering, Korean Society of Civil Engineering, Vol. 28, No. 5A, pp. 631-639.
  3. Kim Byeong Hwa, Park Jong-Chil(2008) Modal Parameter Extraction of Seohae Cable-stayed Bridges: II. Natural Frequency and Damping Ratio. J. of Korean Society of Civil Engineering, Korean Society of Civil Engineering, Vol. 28, No. 5A, pp. 641-674.
  4. Kim Sung-Ho, et al.(2011) Buffeting Responses of Concrete Cable-stayed Bridge Considering Turbulent Characteristics of Bridge Site. J. of Korean Society of Civil Engineering, Korean Society of Civil Engineering, Vol. 31, No. 2A, pp. 97-104.
  5. Kim Ho-Kyung, et al.(2006) Parametric Study on the Buffeting Response for a Cable-Stayed Bridge. J. of Korean Society of Civil Engineering, Korean Society of Civil Engineering, Vol. 26, No. 2, pp. 371-382.
  6. Yhim Sung Soon(2005) Determination of Initial Tension and Reference Length of Cables of Cable-Stayed Bridges. J. of KSMI, Korea Institute for Structural Maintenance Inspection, Vol. 9, No. 2, pp. 137-146.
  7. Yhim Sung Soon, et al.(2011) FEM modeling and Wind Induced Vibration Analysis for Wind Resistance Design of Special Bridges on National Highway, Research report, Korean Institute of Construction Technology.
  8. Byeong Hwa Kim, Norris Stubbs and Taehyo Park (2004) A New Method to Extract Modal Parameters Using Output-only Responses. J. of Sound and Vibration, Vol. 282, pp. 215-230.
  9. C. R. Farrar and G. H. James III (1997) System Identification from Ambient Vibration Measurements on a Bridge. J. of Sound and Vibration, Vol. 205, pp. 1-18. https://doi.org/10.1006/jsvi.1997.0977
  10. Davenport, A.G. (1962) The Response of Slender, Line-like Structures to a Gusty Wind. ICE, Vol. 23, No. 3, pp. 389-408.
  11. Simiu, E. and Scanlan, R.H. (1996) Wind Effects on Structures. Wiley Interscience.

Cited by

  1. Buffeting Analysis of a Cable-Stayed Bridge Using Three-Dimensional Computational Fluid Dynamics vol.19, pp.11, 2014, https://doi.org/10.1061/(ASCE)BE.1943-5592.0000618
  2. A Study on Buffeting Responses of a In-service Steel Cable-stayed Bridge Using Full-scale Measurements vol.36, pp.3, 2016, https://doi.org/10.12652/Ksce.2016.36.3.0349