DOI QR코드

DOI QR Code

Refined 3-Dimensional Strut-Tie Models for Analysis and Design of Reinforced Concrete Pile Caps

철근콘크리트 파일캡의 해석 및 설계를 위한 개선 3차원 스트럿-타이 모델

  • Received : 2011.09.27
  • Accepted : 2012.11.13
  • Published : 2013.02.04

Abstract

The sectional methods of current design codes have been broadly used for the design of various kinds of reinforced concrete pile caps. Lately, the strut-tie model approach of current design codes also became one of the attracting methods for pile caps. However, since the sectional methods and the strut-tie model approach of current design codes have been established by considering the behaviors of structural concrete without D-regions and two-dimensional concrete structures with D-regions, respectively, it is inappropriate to apply the methods to the pile caps dominated by 3-dimensional structural behavior with disturbed stress regions. In this study, the refined 3-dimensional strut-tie models, which consider the strength characteristics of 3-dimensional concrete struts and nodal zones and the load-carrying capacity of concrete ties in tension regions, are proposed for the rational analysis and design of pile caps. To examine the validity of the proposed models and to verify the necessity of appropriate constituent elements for describing 3-dimensional structural behavior and load-transfer mechanism of pile caps, the ultimate strength of 78 reinforced concrete pile caps tested to failure was examined by the proposed models along with the sectional and strut-tie model methods of current design codes.

철근콘크리트 파일캡의 설계 시 사용되고 있는 현행 설계기준의 단면법 및 스트럿-타이 모델 방법은 각각 B-영역으로 이루어진 철근콘크리트 구조부재의 거동과 2차원 응력교란영역을 갖는 철근콘크리트 구조부재의 거동에 기초한 것으로, 이를 응력교란영역(D-영역)을 갖고 3차원 거동이 지배적인 철근콘크리트 파일캡의 설계에 적용하는 것은 적절하지 않다. 이 연구에서는 3축 응력을 받는 콘크리트 스트럿 및 절점영역의 강도특성과 철근이 배치되지 않은 인장영역에서의 콘크리트 타이의 하중저항능력 등을 반영하여 철근콘크리트 파일캡을 합리적으로 설계할 수 있는 개선 3차원 스트럿-타이 모델을 제안하였다. 파괴실험이 수행된 78개 철근콘크리트 파일캡 시험체의 극한강도를 현행 설계기준의 단면법 및 스트럿-타이 모델 방법, 그리고 이 연구의 개선 3차원 스트럿-타이 모델을 이용하여 평가하였으며, 그 결과의 비교분석을 통해 스트럿-타이 모델 방법 적용 시의 3차원 거동 및 하중전달 메커니즘을 묘사하기 위한 적절한 구성요소의 필요성과 이 연구에서 제안한 개선 3차원 스트럿-타이 모델의 타당성을 검증하였다.

Keywords

References

  1. ACI Subcommittee 445-1 (2002), Examples for the Design for Structural Concrete with Strut-and-Tie Models; SP-208, Reineck R. H. eds, American Concrete Institute, Michigan, USA.
  2. Adebar, P., Kuchma, D., and Collins, M. P. (1990), Strut-and-Tie Models for the Design of Pile Caps: An Experimental Study, ACI Structural Journal, Vol. 87, No. 1, pp. 81-92.
  3. Adebar, P. and Zhou L. (1993), Bearing Strength of Compressive Struts Confined by Plain Concrete, ACI Structural Journal, Vol. 90, No. 5, pp. 534-541.
  4. Adebar, P. and Zhou L. (1996), Design of Deep Pile Caps by Strut-and-Tie Models, ACI Structural Journal, Vol. 93, No. 4, pp. 437-448.
  5. American Association of State Highway and Transportation Officials (2010), AASHTO LRFD Bridge Design Specifications, 5th Edition, Washington, D.C., USA.
  6. American Concrete Institute (1999), Building Code Requirements for Structural Concrete (ACI 318-99) and Commentary (ACI 318R-99), Farmington Hills, Michigan, USA.
  7. American Concrete Institute (2011), Building Code Requirements for Structural Concrete (ACI 318M-11) and Commentary, Farmington Hills, Michigan, USA.
  8. Blevot, J. and Fremy R. (1967), Semelles sur Pieux, Annales de l'Institut Technique du Batiment et des Travaux Publics, Vol. 20, No. 230, pp. 223-295.
  9. British Standards Institution (1997), Structural Use of Concrete; BS8110, Milton Keynes, UK.
  10. Clarke, J. L. (1973), Behavior and Design of Pile Caps with Four Piles, Report No. 42.489, Cement and Concrete Association, London, UK.
  11. Concrete Reinforcing Steel Institute (2008), CRSI Design Handbook 2008, 10th Edition, Illinois, USA.
  12. Canadian Standards Association (2004), Design of Concrete Structures for Buildings, A23.3-M04, Rexdale, Ontario, Canada.
  13. Jeun, C. H. and Yun, Y. M. (2010), Validity Evaluation of Effective Strength of Concrete Strut using Strut-Tie Model Analysis of Structural Concrete, Journal of the Korean Society of Civil Engineers, Vol. 30, No. 5A, pp. 443-462.
  14. Mitchell, D., Collins, M. P., Bhide, S. B., and Rabbat, B. G. (2004), AASHTO LRFD Strut-and-Tie Model Design Examples, Portland Cement Association, Illinois, USA.
  15. Park, J. W. (2005), Strength Prediction of RC Pile Caps Using 3-Dimensional Strut-Tie Model Approach, Journal of the Korean Society of Civil Engineers, Vol. 25, No. 5A, pp. 771-116.
  16. Park, J. W, Kuchma, D., and Souza, R. (2008), Strength Predictions of Pile Caps by A Strut-and-Tie Model Approach, Canadian Journal of Civil Engineering, Vol. 35, pp. 1399-1413. https://doi.org/10.1139/L08-062
  17. Sabnis, G. M. and Gogate, A. B. (1984), Investigation of Thick Slab (Pile Cap) Behavior, Proc., ACI Journal, Farmington Hills, Michigan, Vol. 81, pp. 35-39.
  18. Suzuki, K., Otsuki, K., and Tsubata, T. (1998), Influence of Bar Arrangement on Ultimate Strength of Four-Pile Caps, Transactions of the Japan Concrete Institute, Vol. 20, pp. 195-202.
  19. Suzuki, K., Otsuki, K., and Tsuchiya, T. (2000), Influence of Edge Distance on Failure Mechanism of Pile Caps, Transactions of the Japan Concrete Institute, Vol. 22, pp. 361-368.
  20. The International Federation for Structural Concrete(fib) (2010), Model Code 2010 Volume 2, The International Federation for Structural Concrete(fib), Lausanne, Switzerland.
  21. Willam, K. J. and Warnke, E. P. (1974), Constitutive Model for the Triaxial Behavior of Concrete. Proc., International Association of Bridge Structures, Vol. 19, pp 1-30.
  22. Yun, Y. M. (2005), Effective Strength of Concrete Strut in Strut-Tie Model (I): Methods for Determining Effective Strength of Concrete Strut, Journal of the Korean Society of Civil Engineers, Vol. 25, No. 1A, pp. 49-59.
  23. Yun, Y. M. and Kim, B. H. (2008), A Two-Dimensional Grid Strut-Tie Model Approach for Structural Concrete, Journal of Structural Engineering, ASCE, Vol. 134, No. 7, pp 1199-1214. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:7(1199)

Cited by

  1. New Method for Generating Strut-and-Tie Models of Three-Dimensional Concrete Anchorage Zones and Box Girders vol.22, pp.8, 2017, https://doi.org/10.1061/(ASCE)BE.1943-5592.0001078
  2. Strength of Concrete Struts in Three-Dimensional Strut-Tie Models vol.142, pp.11, 2016, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001584
  3. A new evaluation procedure for the strut-and-tie models of the disturbed regions of reinforced concrete structures vol.148, 2017, https://doi.org/10.1016/j.engstruct.2017.07.012