Preparation and Characterization of Proton Conducting Crosslinked P(VDF-co-CTFE)-MAA/SEMA membranes

수소이온 전도성 가교된 P(VDF-co-CTFE)-MAA/SEMA 막 제조 및 분석

  • Patel, Rajkumar (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Lei, Zeng Xiao (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Heo, Sung Yeon (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • Received : 2013.08.08
  • Accepted : 2013.08.26
  • Published : 2013.08.30

Abstract

Poly(vinylidenefluoride-co-chlorotrifluoroethylene) P(VDF-co-CTFE) polymer was attached to methacrylic acid (MAA) in the presence of 1,8-diazabicyclo[5,4,0]undec-7-ene(DBU) catalyst to prepare P(VDF-co-CTFE)-MAA copolymer. The modified P(VDF-co-CTFE)-MAA was polymerized with 2-sulfoethyl methacrylate (SEMA) monomer in the presence of 4',4'-azobis(4-cyanovaleric acid(ACVA) initiator by free radical polymerization to form the proton conducting membrane. The ratio of the SEMA was increased in the membrane to increase the presence of the acidic group. The maximum IEC value that was observed at 50% SEMA was around 0.82 meq/g, which is consistent with the water uptake value. The highest proton conductivity achieved by P(VDF-co-CTFE)-MAA/SEMA membrane with 50% SEMA was approximately 0.041 S/cm. This indicates that the available ionic group for the proton conduction increases with the increase in the SEMA in the membrane.

촉매 1,8-diazabicyclo[5,4,0]undec-7-ene(DBU)를 이용하여, poly(vinylidenefluoride-co-chlorotrifluoroethylene) P(VDF-co-CTFE) 고분자와 methacrylic acid (MAA)를 반응시켜, P(VDF-co-CTFE)-MAA 공중합체를 제조하였다. 또한 P(VDF-co-CTFE)-MAA와 2-sulfoethyl methacrylate (SEMA) 단량체를 4',4'-azobis(4-cyanovaleric acid) (ACVA) 개시제 하에서 자유 라디칼 중합하여 수소 이온 전도성 막을 제조하였다. SEMA 함량이 많아짐에 따라 술폰산 그룹이 증가하였다. SEMA 함량이 50%일 때 최대 이온교환 용량값이 0.82 meq/g에 도달하였으며 이는 함수량 결과와 일치하였다. 또한, SEMA 함량이 50%일 때 수소이온 전도도가 0.041 S/cm까지 도달하였다. 이러한 결과는 분리막에서 SEMA 함량이 증가할수록 수소 이온을 전달시킬 수 있는 이온그룹이 증가하기 때문이다.

Keywords

References

  1. P. E. Trapa, B. Huang, Y.-Y. Won, D. R. Sadoway, and A. M. Mayes, "Block Copolymer Electrolytes Synthesized by Atom Transfer Radical Polymerization for Solid-State, Thin-Film Lithium Batteries, Electrochem", Solid-State Letters, 5, A85 (2002). https://doi.org/10.1149/1.1461996
  2. J. H. Kim, M. S. Kang, Y. J. Kim, J. Won, N. G. Park, and Y. S. Kang, "Dye-Sensitized Nanocrystalline Solar Cells Based on Composite Polymer Electrolytes Containing Fumed Silica Nanoparticles", Chem. Commun., 14, 1662 (2004).
  3. S. W. Kuo, C. H. Wu, and F. C. Chang, "Thermal Properties, Interactions, Morphologies, and Conductivity Behavior in Blends of Poly(vinylpyridine)s and Zinc Perchlorate", Macromolecules, 37, 192 (2004). https://doi.org/10.1021/ma035655+
  4. J. H. Kim, B. R. Min, J. Won, S. H. Joo, H. S. Kim, and Y. S. Kang, "Role of Polymer Matrix in Polymer/Silver Complexes for Structure, Interactions, and Facilitated Olefin Transport", Macromolecules, 36, 6183 (2003). https://doi.org/10.1021/ma034314t
  5. J.-H. Choi, P.-H. Kang, Y.-M. Lim, J.-Y. Sohn, J.-H. Shin, C.-H. Jung, J.-P. Jeun, and Y.-C. Nho, "Preparation and Characterization of Poly(styrenesulfonic acid)-grafted Fluoropolymer Membrane for Direct Methanol Fuel Cell", Korean Membrane Journal, 9, 52 (2007).
  6. L. Depre, M. Ingram, C. Poinsignon, and M. Popall, "Proton conducting sulfon/sulfonamide functionalized materials based on inorganic-organic matrices", Electrochim. Acta, 45, 1377 (2000). https://doi.org/10.1016/S0013-4686(99)00346-1
  7. S. D. Mikhailenko, K. Wang, S. Kaliaguine, P. Xing, G. P. Robertson, and M. D. Guiver, "Proton conducting membranes based on cross-linked sulfonated poly(ether ether ketone) (SPEEK)", J. Membr. Sci., 233, 93 (2004). https://doi.org/10.1016/j.memsci.2004.01.004
  8. C. H. Park, C. H. Lee, Y. S. Chung, and Y. M. Lee, "Preparation and Characterization of Crosslinked Block and Random Sulfonated Polyimide Membranes for Fuel Cell", Membrane Journal, 16, 241 (2006).
  9. D. J. Kim, B.-J. Chang, C. K. Shin, J.-H. Kim, S.-B. Lee, and H.-J. Joo, "Preparation and Characterization of Fluorenyl Polymer Electrolyte Membranes Containing PFCB Groups", Membrane Journal, 16, 16 (2006).
  10. S.-L. Chen, J. B. Benziger, A. B. Bocarsly, and T. Zhang, "Photo-Cross-Linking of Sulfonated Styrene- Ethylene-Butylene Copolymer Membranes for Fuel Cells", Ind. Eng. Chem. Res., 44, 7701 (2005). https://doi.org/10.1021/ie050015b
  11. J. R. Varcoe, R. C. T. Slade, E. L. H. Yee, S. D. Poynton, D. J. Driscoll, and D. C. Apperley, "Poly (ethylene-co-tetrafluoroethylene)-Derived Radiation- Grafted Anion-Exchange Membrane with Properties Specifically Tailored for Application in Metal-Cation- Free Alkaline Polymer Electrolyte Fuel Cells.", Chem. Mater., 19, 2686 (2007). https://doi.org/10.1021/cm062407u
  12. Z. Li, J. Ding, G. P. Robertson, and M. D. Guiver, "A Novel Bisphenol Monomer with Grafting Capability and the Resulting Poly(arylene ether sulfone)s", Macromolecules, 39, 6990 (2006). https://doi.org/10.1021/ma061054h
  13. C. Manea and M. Mulder, "Characterization of polymer blends of polyethersulfone/sulfonated polysulfone and polyethersulfone/sulfonated polyetheretherketone for direct methanol fuel cell applications", J. Membr. Sci., 206, 443 (2002). https://doi.org/10.1016/S0376-7388(01)00787-6
  14. J. H. Choi, C. K. Yeom, J. M. Lee, and D. S. Suh, "Nanofiltration of Electrolytes with Charged Composite Membranes", Membrane Journal, 13, 29 (2003).
  15. C. Heitner-Wirguin, "Recent advances in perfluorinated ionomer membranes: structure, properties and applications", J. Membr. Sci., 120, 1 (1996). https://doi.org/10.1016/0376-7388(96)00155-X
  16. D. K. Lee, Y. W. Kim, J. K. Choi, B. R. Min, and J. H. Kim, "Preparation and Characterization of Proton Conducting Crosslinked Diblock Copolymer Membranes", J. Appl. Polym. Sci., 107, 819 (2008). https://doi.org/10.1002/app.27122
  17. Y. W. Kim, J. K. Choi, J. T. Park, and J. H. Kim, "Proton Conducting Poly(vinylidene fluoride-co-chlorotrifluoroethylene) Graft Copolymer Electrolyte Membranes", J. Membr. Sci., 313, 315 (2008). https://doi.org/10.1016/j.memsci.2008.01.015
  18. Z. Wang, H. Ni, C. Zhao, X. Li, T. Fu, and H. Na, "Investigation of sulfonated poly(ether ether ketone sulfone)/heteropolyacid composite membranes for high temperature fuel cell applications", J. Polym. Sci. B: Polym. Phys., 44, 1967 (2006). https://doi.org/10.1002/polb.20841
  19. T. Z. Fu, C. J. Zhao, S. L. Zhong, G. Zhang, K. Shao, H. Q. Zhang, J. Wang, and H. Na, "SPEEK/ epoxy resin composite membranes in situ polymerization for direct methanol fell cell usages", J. Power Sources, 165, 708 (2007). https://doi.org/10.1016/j.jpowsour.2006.12.023
  20. Y. S. Kim, F. Wang, M. Hickner, T. A. Zawodzinski, and J. E. McGrath, "Fabrication and characterization of heteropolyacid (H3PW12O40)/ directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications", J. Membr. Sci., 212, 263 (2003). https://doi.org/10.1016/S0376-7388(02)00507-0
  21. J. K. Choi, D. K. Lee, Y. W. Kim, B. R. Min, and J. H. Kim, "Composite Polymer Electrolyte Membranes Comprising Triblock Copolymer and Heteropolyacid for Fuel Cell Applications", J. Polym. Sci. B. Polym. Phys., 46, 691 (2008). https://doi.org/10.1002/polb.21390
  22. J. T. Park, K. J. Lee, M. S. Kang, Y. S. Kang, and J. H. Kim, "Nanocomposite Polymer Electrolytes Containing Silica Nanoparticles: Comparison between Poly(ethylene glycol) and Poly(ethylene oxide) dimethyl ether", J. Appl. Polym. Sci., 106, 4083 (2007). https://doi.org/10.1002/app.26951