DOI QR코드

DOI QR Code

Comparison of Seed Viability Among 42 Species Stored in a Genebank

  • Lee, Ho-Sun (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA) ;
  • Jeon, Young-Ah (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA) ;
  • Lee, Young-Yi (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA) ;
  • Lee, Sok-Young (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA) ;
  • Kim, Yeon-Gyu (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA)
  • Received : 2013.09.13
  • Accepted : 2013.11.13
  • Published : 2013.12.30

Abstract

This study was conducted to compare seed viability among 42 species after ten years of storage in the midterm storage complex ($4^{\circ}C$, 30-40% RH) at the National Agrobiodiversity Center (NAC) Korean genebank maintained by the Rural Development Administration (RDA), Republic of Korea and to suggest the relative seed longevity and suitable monitoring intervals. The germination data from initial tests and after ten years of storage were compared to measure changes in viability during storage. The decline in seed viability varied greatly among seeds from -11.5% for Triticum sp. to 80% for melon. Coriander, crowndaisy, safflower, cosmos, Chinesebellflower, waxgourd, melon, castorbean, Welch-onion, hollyhock, wild barley, and tallfescue showed significant decreases in viability of 34.2%, 73.4%, 36.5%, 30.0%, 40.2%, 71.3%, 80.0%, 65.9%, 45.5%, 51.4%, 53.0%, and 33.5%, respectively. Gardenpea, soybean, perilla, onion, wild rice, Italian-ryegrass, and pepper showed a 15-30% decline in viability, while the viability of morningglory, adzukibean, maize, and Capsicum sp. decreased by 15% to 5%. Chicory, radish, Chinese-cabbage, bottlegourd, watermelon, cucumber, pumpkin, Cucurbita sp., groundnut, kidneybean, clubwheat, sesame, wheat, Triticum sp., rice, barley, orchardgrass, buckwheat, and wild tomato showed changes in viability of <5%. The changes in storage viability also varied within families. The wild types of rice and barley showed rapid viability loss and presented different aspects from cultivars. Since seed viability of species, classified as index 1 or 2, showed germination losses >15% after ten years of storage, a viability test should be conducted with five year intervals, while species with germination loss of <15% (in index 3 or 4) can be retested at ten year intervals.

Keywords

References

  1. Avrami, M. 1941. Kinetics of phase change III. Granulation, phase change and microstructure. J. of Chem. Physics 9 : 177-184. https://doi.org/10.1063/1.1750872
  2. Baskin, C. C. and J. M. Baskin. 1988. Germination ecophysiology of herbaceous plant species in a temperature region. Am. J. Bot. 75 : 286-305. https://doi.org/10.2307/2443896
  3. Copeland, L. O. and M. B. McDonald. 2001. Principles of seed science and technology. 4th. Kluwer Academic Publishers, Massachusetts, USA. pp. 190-230.
  4. Daws, M. I., E. Lydall, P. Chmielarz, O. Leprince, S. Matthews, C. A. Thanos, and H. W. Pritchard. 2004. Developmental heat sum influences recalcitrant seed traits in Aesculus hippocastanum across Europe. The New Phytologist 162(1) : 157-166. https://doi.org/10.1111/j.1469-8137.2004.01012.x
  5. Ellis, R. H. and T. D. Hong. 2007. Quantitative response of the longevity of seed of twelve crops to temperature and moisture in hermetic storage. Seed Science and Technology 35 : 423-444. https://doi.org/10.15258/sst.2007.35.2.17
  6. FAO/IPGRI. 1994. Gene bank standards. Food and Agricultural Organization of the United Nations/International Plant Genetic Resources Institute, Rome, Italy. p.46.
  7. Harrington, J. F. 1972. Seed storage and longevity. pp. 145-240 In: Seed biology. vol.III. by Kozlowski, T.T. ed. Academic Press, NY.
  8. Hay, F., J. Klin, and R. Probert. 2006. Can a post-harvest ripening treatment extend the longevity of Rhododendron L. seeds? Scientia Horticulturae 111 : 80-83. https://doi.org/10.1016/j.scienta.2006.09.006
  9. Hendry, G. A., F. K. Thompson, C. J. Moss, E. Edwards, and P. C. Thorpe. 1994. Seed persistence : a correlation between seed longevity in the soil and ortho-dihydroxyphenol concentration. Functional Ecology 8 : 658-664. https://doi.org/10.2307/2389929
  10. ISTA. 2005. International Rules for Seed Testing. International Seed Testing Association, Bassersdorf, Switzerland.
  11. Kochanek, J., Y. M. Buckley, R. J. Probert, S. W. Adkins, and K. J. Steadman. 2010. Pre-zygotic parental environment modulates seed longevity. Austral Ecology 35 : 837-848. https://doi.org/10.1111/j.1442-9993.2010.02118.x
  12. Kueneman, E. A. 1983. Genetic control of seed longevity in soybeans. 1983. Crop Science 23 : 5-8. https://doi.org/10.2135/cropsci1983.0011183X002300010002x
  13. Miura, K., S. Y. Lin, M. Yano, and T. Nagamine. 2002. Mapping quantitative trait loci controlling seed longevity in rice (Oryza sativa L.). Theoretical and Applied Genetics 104 : 981-986. https://doi.org/10.1007/s00122-002-0872-x
  14. Nagel, M. and A. Borner. 2010. The longevity of crop seeds stored under ambient conditions. Seed Science Research 20 : 1-12. https://doi.org/10.1017/S0960258509990213
  15. Nagel, M., M. A. R. Arif, M. Rosenhauer, and A. Borner. 2010. Longevity of seeds-intraspecific differences in the Gastersleben genebank collections. Tagungsband 60. Tagung der Vereinigung der Pflanzenzuchter und Saatgutkaufleute Osterreichs, 24-26 November 2009, Raumberg-Gumpenstein. pp. 179-181.
  16. Niedzielski, M., C. Walters, W. Luczak, L. M. Hill, L. J. Wheeler, and J. Puchalski. 2009. Assessment of variation in seed longevity within rye, wheat and the intergenetic hybrid triticale. Seed Science Research 19 : 213-224. https://doi.org/10.1017/S0960258509990110
  17. Parzies, H. K., W. Spoor, and R. A. Ennos. 2000. Genetic diversity of barley landrace accessions (Hordeum vulgare ssp. vulgare) conserved for different lengths of time in ex situ gene banks. Heredity 84 : 476-486. https://doi.org/10.1046/j.1365-2540.2000.00705.x
  18. Porsild, A. E. and C. R. Harrington. 1967. Lupinus articus Wats. grown from seeds of the Pleistocene Age. Science 158 : 113-114. https://doi.org/10.1126/science.158.3797.113
  19. Probert, R. J., M. I. Daws, and F. R. Hay. 2009. Ecological correlates of ex situ seed longevity : a comparative study on 195 species. Annals of Botany 104 : 57-69. https://doi.org/10.1093/aob/mcp082
  20. Rincker, C. M. 1981. Long-term subfreezing storage of forage crop seeds. Crop Science 21 : 424-427. https://doi.org/10.2135/cropsci1981.0011183X002100030017x
  21. Rao, N. K., J. Hanson, M. E. Dulloo, K. Ghosh, D. Nowell, and M. Larinde. 2006. Manual of seed handling in genebanks. Handbooks for genebanks no. 8. Rome, Bioversity International.
  22. Roberts, E. H. and R. H. Ellis. 1982. Physiological, ultrastructural and metabolic aspects of seed viability. pp. 465-485. In: The physiology and biochemistry of seed development, dormancy and germination. by Khan, A. A. ed. Amsterdam, Elsevier Biomedical Press.
  23. Roberts, E. H. and R. H. Ellis. 1989. Water and seed survival. Annals of Botany 63 : 39-52.
  24. Sivori E., F. Nakayama, and E. Cigliano. 1968. Germination of Achirs seed (Canna sp.) approximately 550 years old. Nature 219 : 1269-1270. https://doi.org/10.1038/2191269a0
  25. Walters, C. 1998. Understanding of mechanism and kinetics of seed aging. Seed Science Research 8 : 223-244.
  26. Walters, C., L. M. Wheeler, and J. M. Grotenhuis. 2005. Longevity of seeds stored in a genebank : species characteristics. Seed Science Research 15 : 1-20. https://doi.org/10.1079/SSR2004195
  27. Wang, Y., C. Mu, Y. Hou, and X. Li. 2008. Optimum harvest time of Vicia cracca in relation to high seed quality during pod development. Crop Science 48 : 709-715. https://doi.org/10.2135/cropsci2007.04.0211sc
  28. Wester, H. V. 1973. Further evidence of age of ancient viable Lotus seeds from Pulantien Deposit, Manchuria. Horticultural Science 5 : 371-377.

Cited by

  1. Medium-term seed storage of 50 genera of forage legumes and evidence-based genebank monitoring intervals 2017, https://doi.org/10.1007/s10722-017-0558-5
  2. Temporal changes in fungal communities from buckwheat seeds and their effects on seed germination and seedling secondary metabolism vol.120, pp.5, 2016, https://doi.org/10.1016/j.funbio.2016.03.003
  3. Proteins in Relation to Vigor and Viability of White Lupin (Lupinus albus L.) Seed Stored for 26 Years vol.8, 2017, https://doi.org/10.3389/fpls.2017.01392
  4. The Longevity of Crop Seeds Stored Under Long-term Condition in the National Gene Bank of Bulgaria vol.62, pp.3, 2016, https://doi.org/10.1515/agri-2016-0010
  5. Effect of long‐term storage on phenolic composition, antioxidant capacity, and protein profiles of Calicotome villosa subsp. intermedia seeds vol.44, pp.1, 2013, https://doi.org/10.1111/jfbc.13093
  6. Effects of Inorganic Salt Solutions on Vigour, Viability, Oxidative Metabolism and Germination Enzymes in Aged Cabbage and Lettuce Seeds vol.9, pp.9, 2013, https://doi.org/10.3390/plants9091164
  7. Physiological Characteristics of Field Bean Seeds (Vicia faba var. minor) Subjected to 30 Years of Storage vol.10, pp.11, 2013, https://doi.org/10.3390/agriculture10110545
  8. Exogenous Antioxidants Enhance Seedling Growth and Yield of Artificially Aged Cabbage and Lettuce Seeds vol.7, pp.9, 2021, https://doi.org/10.3390/horticulturae7090274