DOI QR코드

DOI QR Code

A 2.5V 0.25㎛ CMOS Temperature Sensor with 4-bit SA ADC

4-비트 축차근사형 아날로그-디지털 변환기를 내장한 2.5V 0.25㎛ CMOS 온도 센서

  • 김문규 (금오공과대학교 전자공학과) ;
  • 장영찬 (금오공과대학교 전자공학부)
  • Received : 2012.12.13
  • Accepted : 2013.01.16
  • Published : 2013.02.28

Abstract

In this paper, a CMOS temperature sensor is proposed to measure the internal temperature of a chip. The temperature sensor consists of a proportional-to-absolute-temperature (PTAT) circuit for a temperature sensing part and a 4-bit analog-to-digital converter (ADC) for a digital interface. The PTAT circuit with the compact area is designed by using a vertical PNP architecture in the CMOS process. To reduce sensitivity of temperature variation in the digital interface circuit of the proposed temperature sensor, a 4-bit successive approximation (SA) ADC using the minimum analog circuits is used. It uses a capacitor-based digital-to-analog converter and a time-domain comparator to minimize power consumption. The proposed temperature sensor was fabricated by using a $0.25{\mu}m$ 1-poly 6-metal CMOS process with a 2.5V supply, and its operating temperature range is from 50 to $150^{\circ}C$. The area and power consumption of the fabricated temperature sensor are $130{\times}390{\mu}m^2$ and $868{\mu}W$, respectively.

본 논문에서는 칩 내부의 온도를 측정하기 위한 CMOS 온도 센서가 제안된다. 제안하는 온도 센서는 칩 내부의 온도에 비례하는 전압을 생성하는 proportional-to-absolute-temperature (PTAT) 회로와 디지털 인터페이스를 위한 4-비트 아날로그-디지털 변환기로 구성된다. 소면적을 가지는 PTAT 회로는 CMOS 공정에서 vertical PNP 구조를 이용하여 설계된다. 온도변화에 둔감한 저전력 4-비트 아날로그-디지털 변환기를 구현하기 위해 아날로그 회로를 최소로 사용하는 축차근사형 아날로그-디지털 변환기가 이용되며, 이를 위해 커패시터-기반 디지털-아날로그 변환기와 시간-도메인 비교기를 이용한다. 제안된 온도 센서는 2.5V $0.25{\mu}m$ 1-poly 6-metal CMOS 공정에서 제작되었고, $50{\sim}150^{\circ}C$ 온도 범위에서 동작한다. 구현된 온도 센서의 면적과 전력 소모는 각각 $130{\times}390{\mu}m^2$$868{\mu}W$이다.

Keywords

References

  1. D. Barrettino, P. Malcovati, M. Graf, S. Hafizovic, and A. Hierlemann, "CMOS-based monolithic controllers for smart sensors comprising micromembranes and microcantilevers," IEEE Transactions on Circuits and Systems I, vol. 54, no. 1, pp. 141-152, Jan. 2007
  2. E. Lauwers, J. Suls, W. Gumbrecht, D. Maes, G. Gielen, and W. Sansen, "A CMOS multiparameter biochemical microsensor with temperature control and signal interfacing," IEEE J. of Solid State Circuits, vol. 36, no. 12, pp. 2030-2038, Dec. 2001 https://doi.org/10.1109/4.972154
  3. B. Razavi, "Design of Analog CMOS Integrated Circuits", McGraw-Hill, New York, 2001
  4. H. Banba, H. Shiga, A. Umezawa, T. Miyaba, T. Tanzawa, S. Atsumi, and K. Sakui, "A CMOS Bandgap Reference Circuit with Sub-1-V Operation," IEEE J. of Solid State Circuits, vol. 34, no. 5, pp. 670-674, May, 1999 https://doi.org/10.1109/4.760378
  5. J.-H. Eo, S.-H. Kim, and Y.-C. Jang, "A 1V 200 kS/s 10-bit Successive Approximation ADC for a Sensor Interface," IEICE transaction on Electronics, vol. E94-C, no. 11, Nov. 2011
  6. S.-K. Lee, S.-J. Park, Y. Suh, H.-J. Park, and J.-Y. Sim, "A 1.3$\mu$W 0.6V 8.7-ENOB Successive Approximation ADC in a 0.18$\mu$m CMOS," in Proc. IEEE VLSI Circuit Symp, pp.242-243, Jun.,2009.

Cited by

  1. The Development of Temperature Measurement System using Non-Contact Temperature Sensor Array vol.19, pp.9, 2015, https://doi.org/10.6109/jkiice.2015.19.9.2087