DOI QR코드

DOI QR Code

Different morphologies of three dimensional ZnO structures synthesized by thermal evaporation method without a catalyst

촉매를 사용하지 않는 열 기화법으로 다양한 형태의 ZnO 3차원 구조체 합성

  • Bang, Sin Young (Division of Materials Science and Engineering, Hanyang University) ;
  • Tran, Van Khai (Division of Materials Science and Engineering, Hanyang University) ;
  • Oh, Dong Keun (Division of Materials Science and Engineering, Hanyang University) ;
  • Maneeratanasarn, Prachuporn (Division of Materials Science and Engineering, Hanyang University) ;
  • Choi, Bong Geun (Division of Materials Science and Engineering, Hanyang University) ;
  • Ham, Heon (Nanomaterial Research Center, H&H Co. LTD., Korea National University of Transportation) ;
  • Kim, Kyoung Hun (Korea Institute of Ceramic Engineering and Technology) ;
  • Shim, Kwang Bo (Division of Materials Science and Engineering, Hanyang University)
  • 방신영 (한양대학교 신소재공학부) ;
  • ;
  • 오동근 (한양대학교 신소재공학부) ;
  • ;
  • 최봉근 (한양대학교 신소재공학부) ;
  • 함헌 (한국교통대학교 나노소재 연구센터 H&H) ;
  • 김경훈 (한국세라믹기술원) ;
  • 심광보 (한양대학교 신소재공학부)
  • Received : 2012.09.14
  • Accepted : 2012.10.19
  • Published : 2013.02.28

Abstract

ZnO with different morphologies can be used various application depending on their shapes. Different morphologies of ZnO structures were synthesized by a catalysis-free thermal evaporation process. Their morphologies were dependent on the distance from the source to substrate on the same processing condition; in the result were products morphologies of the hollow, cage and star. Their shapes and crystalinity were evaluated by SEM and XRD, respectively. This work demonstrates what kind of growth factors would be involved in the final structure morphologies.

다른 형태의 ZnO는 형태에 따라 각각의 활용분야에 사용할 수 있다. 다양한 형태의 ZnO 구조체(structures)는 촉매를 사용하지 않는 열 기화법(thermal evaporation process)으로 합성되었다. ZnO 구조체의 형태들은 같은 실험 공정에서 기판과 소스간의 거리에 의존하였으며, 그 결과 합성물의 형태는 hollow, cage, star 이었다. ZnO 구조체의 형상과 결정성을 주사전자현미경(SEM)과 X선 회절분석(XRD)으로 각기 평가했다. 본 연구에서는 어떤 종류의 성장 요소가 최종 구조체의 형태에 관여하는지를 입증한다.

Keywords

References

  1. A.P. Alivisatos, "Semiconductor clusters, nanocrystals and quantum dots", Science 271 (1996) 933. https://doi.org/10.1126/science.271.5251.933
  2. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, "One-dimensional nanostructures: synthesis, characterization, and applications", Adv. Mater. 15 (2003) 353. https://doi.org/10.1002/adma.200390087
  3. J. Zhang, L. Sun, J. Yin, H. Su, C. Liao and C. Yan, "Control of ZnO morphology via a simple solution route", Chem. Mater. 14 (2002) 4172. https://doi.org/10.1021/cm020077h
  4. J. Geng, D. Lu, J. Zhu and H. Chen, "Antimony(III)- doped PbWO4 crystals with enhanced photoluminescence via a shape-controlled sonochemical route", J. Phys. Chem. B 110 (2006) 13777. https://doi.org/10.1021/jp057562v
  5. D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen and T. Goto, "Optically pumped lasing of ZnO at room temperature", Appl. Phys. Lett. 70 (1997) 2230. https://doi.org/10.1063/1.118824
  6. M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang, "Catalytic growth of zinc oxide nanowires by vapor transport", Adv. Mater. 13 (2001) 113. https://doi.org/10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H
  7. Z.L. Wang, "Zinc oxide nanostructures: growth, properties and applications", J. Phys.: Condens. Matter. 16 (2004) R829. https://doi.org/10.1088/0953-8984/16/25/R01
  8. J.J. Wu, S.C. Liu, T.C. Wu, K.H. Chen and L.C. Chen, "Heterostructures of ZnO-Zn coaxial nanocables and ZnO nanotubes", Appl. Phys. Lett. 81 (2002) 1312. https://doi.org/10.1063/1.1499512
  9. Y.J. Xing, Z.H. Xi, Z.Q. Xue, X.D. Zhang, J. H. Song, R.M. Wang, J. Xu, Y. Song, S.L. Zhang and D.P. Yu, "Optical properties of the ZnO nanotubes synthesized via vapor phase growth", Appl. Phys. Lett. 83 (2003) 1689. https://doi.org/10.1063/1.1605808
  10. X.L. Zhang, R. Qiao, R. Qiu, J.C. Kim and Y.S. Kang, "Fabrication of hierarchical ZnO nanostructures via a surfactant-directed process", Cryst. Growth & Design 9 (2009) 2906. https://doi.org/10.1021/cg900226h
  11. P.X. Gao and Z.L. Wang, "Mesoporous polyhedral cages and shells formed by textured self-assembly of ZnO nanocrystals", J. Am. Chem. Soc. 125 (2003) 11299. https://doi.org/10.1021/ja035569p
  12. A. Umar, S.H. Kim, Y.H. Im and Y.B. Hahn, "Structural and optical properties of ZnO micro-spheres and cages by oxidation of metallic Zn powder", Superlattices Microstruct. 39 (2006) 238. https://doi.org/10.1016/j.spmi.2005.08.046
  13. H.P. Liang, H.M. Zhang, J.S. Hu, Y.G. Guo, L.J. Wan and C.L. Bai, "Pt hollow nanospheres: facile synthesis and enhanced electrocatalysts", Angew. Chem. Int. Ed. 43 (2004) 1540. https://doi.org/10.1002/anie.200352956
  14. M. Ohmori and E. Matijevic, "Preparation and properties of uniform coated colloidal particles. VII. Silica on hematite", J. Colloid Interface Sci. 150 (1992) 594. https://doi.org/10.1016/0021-9797(92)90229-F
  15. E. Mathiowitz, J.S. Jacob, Y.S. Jong, G.P. Carino, D.E. Chickering, P. Chaturvedi, C.A. Santos, K. Vijayaraghavan, S. Montgomery, M. Bassett and C. Morrell, "Biologically erodable microspheres as potential oral drug delivery systems", Nature 386 (1997) 410. https://doi.org/10.1038/386410a0
  16. Z. Miao, Y. Wu, X. Zhang, Z. Liu, B. Han, K. Ding and G. An, "Large-scale production of self-assembled $SnO_2$ nanospheres and their application in high-performance chemiluminescence sensors for hydrogen sulfide gas", J. Mater. Chem. 17 (2007) 1791. https://doi.org/10.1039/b617114a
  17. J.C. Johnson, H. Yan, P. Yang and R.J. Saykally, "Optical cavity effects in ZnO nanowire lasers and waveguides", J. Phys. Chem. B. 107 (2003) 8816. https://doi.org/10.1021/jp034482n
  18. D.H. Fan, "Synthesis of ZnO hollow spherical structures with different surface-to-volume ratios", Appl. Phys. A. 96 (2009) 655. https://doi.org/10.1007/s00339-009-5252-9
  19. S.L. Mensah, V.K. Kayastha, I.N. Ivanov, D.B. Geohegan and Y.K. Yap, "Formation of single crystalline ZnO nanotubes without catalysts and templates", Appl. Phys. Lett. 90 (2007) 113108. https://doi.org/10.1063/1.2714186
  20. S.H. Jung, E.G. Oh, K.H. Lee, Y.S. Yang, C.G. Park, W.J. Park and S.H. Jeong, "Sonochemical preparation of shape-selective ZnO nanostructures", Cryst. Growth & Design 8 (2008) 265. https://doi.org/10.1021/cg070296l
  21. G.R. Li, S.H. Lu, W.X. Zhao, C.Y. Su and Y.X. Tong, "Controllable electrochemical synthesis of $Ce^{4+}$-doped ZnO nanostructures from nanotubes to nanorods and nanocages", Cryst. Growth & Design 8 (2008) 1276. https://doi.org/10.1021/cg7009995
  22. J.Q. Hu, Q. Li, X.M. Meng, C.S. Lee and S.T. Lee, "Thermal reduction route to the fabrication of coaxial Zn/ZnO nanocables and ZnO nanotubes", Chem. Mater. 15 (2003) 305. https://doi.org/10.1021/cm020649y
  23. S.Y. Bang, W.S. Kim, J.H. Chung, B.G. Choi and K.B. Shim, "Structural charavteristics of ZnO nanostructure synthesized by thermal evaporation method", J. Korea Cryst. Grow. Cryst. Tech. 18 (2008) 81.
  24. Y.C. Chang, W.C. Yang, C.M. Chang, P.C. Hsu and L.J. Chen, "Controlled growth of ZnO nanopagoda arrays with varied lamination and apex angles", Cryst. Growth & Design 9 (2009) 3161. https://doi.org/10.1021/cg801172h
  25. T.W. Kim, T. Kawazoe, S. Yamazaki, M. Ohtsu and T. Sekiguchi, "Low-temperature orientation-selective growth and ultraviolet emission of single-crystal ZnO nanowires", Appl. Phys. Lett. 84 (2004) 3358. https://doi.org/10.1063/1.1723696
  26. D. Pradhan and K.T. Leung, "Template-free single-step electrochemical synthesis of ZnO hollow nanospheres: Self-assembly of hollow nanospheres from nanoparticles", J. Mater. Chem. 19 (2009) 4902. https://doi.org/10.1039/b904965g
  27. Y.C, Kong, D.P. Yu, B. Zhang, W. Fang and S.Q. Feng, "Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach", Appl. Phys. Lett. 78 (2001) 407. https://doi.org/10.1063/1.1342050
  28. Y.K Tseng, C.J. Huang, H.M. Cheng, I.N. Lin, K.S. Liu and I.C. Chen, "Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films", Adv. Fimct. Mater. 13 (2003) 811. https://doi.org/10.1002/adfm.200304434
  29. K. Vanheusden, W.L. Warren, C.H. Seager, D.K. Tallant, J.A. Voigt and B.E. Gnade, "Mechanisms behind green photoluminescence in ZnO phosphor powders", J. Appl. Phys. 79 (1996) 7983. https://doi.org/10.1063/1.362349
  30. B.J. Jin, S.H. Bae, S.Y. Lee and S. Im, "Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition", Mater. Sci. Eng. B 71 (2000) 301. https://doi.org/10.1016/S0921-5107(99)00395-5
  31. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He and H.J. Choi, "Controlled growth of ZnO nanowires and their optical properties", Adv. Funct. Mater. 12 (2002) 323. https://doi.org/10.1002/1616-3028(20020517)12:5<323::AID-ADFM323>3.0.CO;2-G
  32. W.I. Park, G.C. Yi, M. Kim and S.J. Pennycook, "Excitonic emissions observed in ZnO single crystal nanorods", Adv. Mater. 14 (2002) 1841. https://doi.org/10.1002/adma.200290015

Cited by

  1. Synthesis of zinc oxide nanoparticles via aqueous solution routes vol.26, pp.5, 2016, https://doi.org/10.6111/JKCGCT.2016.26.5.175