DOI QR코드

DOI QR Code

Effects of convection on physical vapor transport of Hg2Cl2 in the presence of Kr - Part I: under microgravity environments

  • Lee, Yong Keun (Graduate School of NID Fusion Technology, Seoul National University of Science and Technology) ;
  • Kim, Geug-Tae (Department of Nano-Bio Chemical Engineering, Hannam University)
  • Received : 2012.11.29
  • Accepted : 2013.01.18
  • Published : 2013.02.28

Abstract

Special attention in the role of convection in vapor crystal growth has been paid since some single crystals under microgravity environments less than 1 $g_0$ exhibits a diffusive-convection mode and much uniformity in front of the crystal regions than a normal gravity acceleration of 1 $g_0$. The total molar fluxes show asymmetrical patterns in interfacial distribution, which indicates the occurrence of either one single or more than one convective cell. As the gravitational level decreases form 1 $g_0$ down to $1.0{\times}10^{-4}\;g_0$, the intensity of convection, indicative of the maximum molar fluxes, is reduced significantly for ${\Delta}T=30K$ and 90 K. The total molar fluxes decay first order exponentially with the partial pressure of component B, PB (Torr) for 20 Torr ${\leq}PB{\leq}$ 300 Torr, and two gravity accelerations of $g_y=1\;g_0$ and 0.1 $g_0$.

Keywords

References

  1. D.W. Greenwell, B.L. Markham and F. Rosenberger, "Numerical modeling of diffusive physical vapor transport in cylindrical ampoules", J. Crystal Growth 51 (1981) 413. https://doi.org/10.1016/0022-0248(81)90418-8
  2. B.L. Markham, D.W. Greenwell and F. Rosenberger, "Numerical modeling of diffusive-convective physical vapor transport in cylindrical vertical ampoules", J. Crystal Growth 51 (1981) 426. https://doi.org/10.1016/0022-0248(81)90419-X
  3. B.S. Jhaveri and F. Rosenberger, "Expansive convection in vapor transport across horizontal enclosures", J. Crystal Growth 57 (1982) 57. https://doi.org/10.1016/0022-0248(82)90248-2
  4. B.L. Markham and F. Rosenberger, "Diffusive-convective vapor transport across horizontal and inclined rectangular enclosures", J. Crystal Growth 67 (1984) 241. https://doi.org/10.1016/0022-0248(84)90184-2
  5. A. Nadarajah, F. Rosenberger and J. Alexander, "Effects of buoyancy-driven flow and thermal boundary conditions on physical vapor transport", J. Crystal Growth 118 (1992) 49. https://doi.org/10.1016/0022-0248(92)90048-N
  6. F. Rosenberger, J. Ouazzani, I. Viohl and N. Buchan, "Physical vapor transport revised", J. Crystal Growth 171 (1997) 270. https://doi.org/10.1016/S0022-0248(96)00717-8
  7. H. Zhou, A. Zebib, S. Trivedi and W.M.B. Duval, "Physical vapor transport of zinc-telluride by dissociative sublimation", J. Crystal Growth 167 (1996) 534. https://doi.org/10.1016/0022-0248(96)00305-3
  8. W.M.B. Duval, "Convection in the physical vapor transport process--I: Thermal convection", J. Chem. Vapor Deposition 2 (1994a) 188.
  9. W.M.B. Duval, "Convection in the physical vapor transport process--II: Thermosolutal convection", J. Chem. Vapor Deposition 2 (1994b) 282.
  10. W.M.B. Duval, "Transition to chaos in the physical vapor transport process--I: fluid mechanics problem phenomena in microgravity", Fluids Eng. Div. ASME 175 (1993) 51.
  11. W.M.B. Duval, N.E. Glicksman and B. Singh, "Physical vapor transport of mercurous chloride crystals; design of a microgravity experiment", J. Crystal Growth 174 (1997) 120. https://doi.org/10.1016/S0022-0248(96)01088-3
  12. P.A. Tebbe, S.K. Loyalka and W.M.B. Duval, "Finite element modeling of asymmetric and transient flow fields during physical vapor transport", Finite Elements in Analysis and Design 40 (2004) 1499. https://doi.org/10.1016/j.finel.2003.09.003
  13. G.T. Kim, W.M.B. Duval, N.B. Singh and M.E. Glicksman "Thermal convective effects on physical vapor transport growth of mercurous chloride crystals ($Hg_2C1_2$) for axisymmetric 2-D cylindrical enclosure", Modelling. Simul. Mater. Sci. Eng. 3 (1995) 331. https://doi.org/10.1088/0965-0393/3/3/004
  14. G.T. Kim, W.M.B. Duval and M.E. Glicksman "Thermal convection in physical vapour transport of mercurous chloride ($Hg_2Cl_2$) for rectangular enclosures", Modelling. Simul. Mater. Sci. Eng. 5 (1997) 289. https://doi.org/10.1088/0965-0393/5/3/007
  15. G.T. Kim, W.M.B. Duval and M.E. Glicksman "Effects of asymmetric temperature profiles on thermal convection during physical vapor transport of $Hg_2Cl_2$", Chem. Eng. Comm. 162 (1997) 45. https://doi.org/10.1080/00986449708936631
  16. G.-T. Kim and K.-H. Lee, "Parametric studies on convection during the physical vapor transport of mercurous chloride ($Hg_2Cl_2$)", J. Korean Crystal Growth and Crystal Technology 14 (2004) 281.
  17. G.T. Kim, "Convective-diffusive transport in mercurous chloride ($Hg_2Cl_2$) crystal growth", J. Ceramic Processing Research 6 (2005) 110.
  18. S.J. Yosim and S.W. Mayer, "The mercury-mercuric chloride system", J. Phys. Chem. 60 (1960) 909.
  19. N.B. Singh, M. Gottlieb, A.P. Goutzoulis, R.H. Hopkins and R. Mazelsky, "Mercurous bromide acoustooptic devices", J. Crystal Growth 89 (1988) 527. https://doi.org/10.1016/0022-0248(88)90215-1
  20. F. Rosenberger and G. Müller, "Interfacial transport in crystal growth, a parameter comparison of convective effects", J. Crystal Growth 65 (1983) 91. https://doi.org/10.1016/0022-0248(83)90043-X
  21. S.V. Patankar, "Numerical heat transfer and fluid flow" (Hemisphere Publishing Corp., Washington D.C., 1980).

Cited by

  1. under Microgravity Environments vol.52, pp.1, 2014, https://doi.org/10.9713/kcer.2014.52.1.75
  2. Numerical Analysis for Impurity Effects on Diffusive-convection Flow Fields by Physical Vapor Transport under Terrestrial and Microgravity Conditions: Applications to Mercurous Chloride vol.27, pp.3, 2016, https://doi.org/10.14478/ace.2016.1028