DOI QR코드

DOI QR Code

Inhibitory Effects of Lentinus edodes and Rice with Lentinus edodes mycelium on Diabetes and Obesity

In vitro 및 In vivo에서 표고버섯, 표고버섯균사체배양쌀 추출물의 항당뇨와 항비만 작용

  • Received : 2012.09.20
  • Accepted : 2013.02.04
  • Published : 2013.02.28

Abstract

This study investigated the ability of extracts from Lentinus edodes (LE) and rice with Lentinus edodes mycelium (LEM) to inhibit diabetes and obesity. Lipid accumulation significantly decreased by 78% and 74% upon treatment with 300 ${\mu}g/mL$ of LE and LEM, respectively (p<0.01). Cholesteryl ester transfer protein (CETP) inhibition activity increased by 94% and 99% upon treatment with 300 ${\mu}g/mL$ of LE and LEM, respectively. In order to investigate the effect of LE and LEM on diabetes, the inhibition of protein tyrosine phosphate 1B (PTP1B) activity from the LE and LEM extracts at various concentrations (1, 3, 10, 30, 100, 300 ${\mu}g/mL$) was assessed. PTP1B activity by treatment with 10, 30, and 100 ${\mu}g/mL$ of LE, was inhibited at a rate of 7, 9, and 7% respectively. Also, PTP1B activity from treatment with increasing concentration of LEM led to a significant concentration-dependent inhibition of PTP1B activity (p<0.01). LE and LEM were orally administered for 28 days after a high fat diet (HFD). LE and LEM significantly reduced triglyceride, cholesterol, HDL-cholesterol and LDL-cholesterol levels. GOT and GPT were not significantly effected. These results indicate that extracts of LE and rice with LEM have potent activities useful in the treatment of obesity and diabetes mellitus.

표고버섯, 표고버섯균사체배양쌀 추출물의 항당뇨와 항비만 효과를 규명하고자 본 연구에서는 표고버섯 80% ethanol 추출물(LE), 표고버섯균사체배양쌀 80% ethanol 추출물(LEM)에서 3T3-L1 preadipocyte cell line을 이용하여 세포의 분화에 미치는 영향을 확인할 수 있었다. 분화유도후 8일 째에 Oil Red O 염색을 통해 세포내 형성된 지방구(lipid droplet)를 isopropanol에 용출하여 500 nm에서 흡광도를 측정한 결과, LE 100 ${\mu}g/mL$에서 p<0.05 수준에서 유의한 억제 효과가 나타났으며, LE 300 ${\mu}g/mL$에서는 p<0.01 수준에서 유의한 억제 효과가 나타났다. LEM은 대조군에 비하여 LEM을 10 ${\mu}g/mL$에서 p<0.05 수준에서 유의한 억제 효과가 나타났으며, LEM 30, 100, 300 ${\mu}g/mL$에서는 p<0.01 수준에서 유의한 억제 효과가 나타났다. CETP 저해 활성을 측정한 결과 LE 300 ${\mu}g/mL$에서 p<0.01 수준에서 유의한 저해효과가 나타났다. LEM을 농도별로 처리하였을 때 대조군에 비하여 농도 의존적으로 억제 효과가 있었으며, LEM 30 ${\mu}g/mL$에서 p<0.05 수준에서 유의한 저해효과가 나타났고 LEM 100, 300 ${\mu}g/mL$에서는 p<0.01 수준에서 유의한 저해효과가 나타났다. PTP1B 저해 활성을 측정한 결과, LE는 대조군에 비하여 LE 10, 30, 100, 1,000 ${\mu}g/mL$에서 통계적으로 p<0.05 수준에서의 유의한 저해효과가 나타났으며, LEM은 대조군에 비하여 농도 의존적으로 통계적으로 p<0.01 수준에서의 유의한 저해효과가 나타났다. 또한 고지방식이에 LE, LEM을 28일간 경구투여 하였을 때 흰쥐의 혈청 총콜레스테롤은 HFD군에 비해 LE군, LEM군에서 모두 유의적인 감소를 나타내었고(p<0.05), 혈청의 중성지방(triglyceride) 농도는 HFD군에 비해 LE, LEM군 모두 감소하는 경향을 나타내었으며 특히 LEM군은 통계적으로 p<0.05 수준에서 유의적인 감소를 나타내었다. 혈청의 HDL-cholesterol은 HFD군과 시료처리군에서 유의적인 차이는 나타나지 않았으며, LDL-cholesterol은 HFD군에 비해 LEM군에서 유의적인 감소를 나타내었다(p<0.01). 이상의 결과로 보아 표고버섯과 표고버섯균사체배양쌀은 지방세포의 분화를 억제시키며, 혈중 지질 조성을 개선시키는 효과가 있음을 알 수 있다.

Keywords

References

  1. Taubes G. 1998. Weight increases worldwide. Science 280:1368. https://doi.org/10.1126/science.280.5368.1368
  2. Despres JP, Lemieux I. 2006. Abdominal obesity and metabolic syndrome. Nature 444: 881-887. https://doi.org/10.1038/nature05488
  3. Jornayvaz FR, Samuel VT, Shulman GI. 2010. The role of muscle insulin resistance in the pathogenesis of atherogenic dyslipidemia and nonalcoholic fatty liver disease associated with the metabolic syndrome. Annu Rev Nutr 30: 273-290. https://doi.org/10.1146/annurev.nutr.012809.104726
  4. Kannel WB, Cupples LA, Ramaswami R, Stokes J 3rd, Kreger BE, Higgins M. 1991. Regional obesity and risk of cardiovascular disease; the Framingham study. J Clin Epidemiol 44: 183-190. https://doi.org/10.1016/0895-4356(91)90265-B
  5. Sharma AM. 2002. Adipose tissue: a mediator of cardiovascular risk. Int J Obes Relat Metab Disord 4: S5-S7.
  6. Inazu A, Brown ML, Hesler CB, Agellon LB, Koizumi J, Takata K, Maruhama Y, Mabuchi H, Tall AR. 1990. Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N Engl J Med 323: 1234-1238. https://doi.org/10.1056/NEJM199011013231803
  7. Saltiel AR, Kahn CR. 2001. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414: 799-806. https://doi.org/10.1038/414799a
  8. Johnson TO, Ermolieff J, Jirousek MR. 2002. Protein tyrosine phosphatase 1B inhibitors for diabetes. Nat Rev Drug Discov 1: 696-709. https://doi.org/10.1038/nrd895
  9. Brüning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Klein R, Krone W, Müller-Wieland D, Kahn CR. 2000. Role of brain insulin receptor in control of body weight and reproduction. Science 289: 2122-2125. https://doi.org/10.1126/science.289.5487.2122
  10. Cook WS, Unger RH. 2002. Protein tyrosine phosphatase 1B: a potential leptin resistance factor of obesity. Dev Cell 2: 385-387. https://doi.org/10.1016/S1534-5807(02)00158-2
  11. National Rural Living Science Institute. 2001. Food composition table. 6th ed. Korea. p 156-157.
  12. Ma SJ. 1968. Effect of the substances extracted from dried mushroom (Lentinus edodes) by several organic solvents on the stability of fat. Korean J Food Sci Technol 15: 150-154.
  13. Friedewald WT, Levy RI, Fredrickson DS. 1972. Estimation of the concentration of the low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18: 499-502.
  14. Yang BK, Park BJ, Ha SO, Kim KY, Kym KH, Park KY, Yun JW, Song CH. 2000. Hypolipidemic effect of extracts of soybean paste containing mycelia of mushroom in hyperlipidemic rats. Kor J Appl Microbiol Biotechnol 28: 228-232.

Cited by

  1. Effect of the Samwondan Ethanol Extract on Obesity Inducer vol.30, pp.4, 2015, https://doi.org/10.6116/kjh.2015.30.4.21.
  2. Anti-Obesity Effects of Lentinus edodes on Obese Mice Induced by High Fat Diet vol.43, pp.2, 2014, https://doi.org/10.3746/jkfn.2014.43.2.194
  3. Cultivation Processes and Yield of Lentinula edodes on Surface Sawdust Bed vol.104, pp.3, 2015, https://doi.org/10.14578/jkfs.2015.104.3.434
  4. Screening of Personalized Immunostimulatory Activities of Saengsik Materials and Products Using Human Primary Immune Cell vol.43, pp.9, 2014, https://doi.org/10.3746/jkfn.2014.43.9.1325
  5. Antioxidant Activities and Antimicrobial Effects of Solvent Extracts from Lentinus edodes vol.44, pp.8, 2015, https://doi.org/10.3746/jkfn.2015.44.8.1144
  6. 스마트 팜 시스템으로 재배된 표고의 외형평가 및 항산화능 활성 vol.15, pp.4, 2013, https://doi.org/10.14480/jm.2017.15.4.206
  7. Immunological Activity of Vegetable Soup Made by Extruded Radish vol.22, pp.2, 2013, https://doi.org/10.13050/foodengprog.2018.22.2.161
  8. 버섯 및 다시마 추출물과 갓의 첨가가 김치의 항산화 특성에 미치는 영향 vol.31, pp.4, 2018, https://doi.org/10.9799/ksfan.2018.31.4.471
  9. 표고버섯 물 추출물을 첨가한 쿠키의 품질 특성 vol.29, pp.9, 2013, https://doi.org/10.5352/jls.2019.29.9.955
  10. Evaluation of the Physiological Activity of Lentinula edodes Extract by Extrusion vol.30, pp.1, 2020, https://doi.org/10.17495/easdl.2020.2.30.1.35
  11. Quality Characteristics and Antioxidant Activities of Yanggaeng Added with Lentinus edodes Powder vol.30, pp.2, 2013, https://doi.org/10.17495/easdl.2020.4.30.2.162
  12. Processing and Quality Characteristics of Porridge Powder of Agricultural and Fishery Complex Using Extrusion Collet vol.32, pp.3, 2013, https://doi.org/10.13000/jfmse.2020.6.32.3.639
  13. Cytotoxicity, metabolic enzyme inhibitory, and anti‐inflammatory effect of Lentinula edodes fermented using probiotic lactobacteria vol.45, pp.8, 2013, https://doi.org/10.1111/jfbc.13838