DOI QR코드

DOI QR Code

Effect of Surface Microstructure of Silicon Substrate on the Reflectance and Short-Circuit Current

실리콘 기판 표면 형상에 따른 반사특성 및 광 전류 개선 효과

  • Yeon, Chang Bong (Convergence Components and Materials Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Lee, Yoo Jeong (Convergence Components and Materials Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Lim, Jung Wook (Convergence Components and Materials Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Yun, Sun Jin (Convergence Components and Materials Research Laboratory, Electronics and Telecommunications Research Institute)
  • 연창봉 (한국전자통신연구원 그린소자소재연구부 박막태양광기술연구팀) ;
  • 이유정 (한국전자통신연구원 그린소자소재연구부 박막태양광기술연구팀) ;
  • 임정욱 (한국전자통신연구원 그린소자소재연구부 박막태양광기술연구팀) ;
  • 윤선진 (한국전자통신연구원 그린소자소재연구부 박막태양광기술연구팀)
  • Received : 2012.11.09
  • Accepted : 2012.12.12
  • Published : 2013.02.27

Abstract

For fabricating silicon solar cells with high conversion efficiency, texturing is one of the most effective techniques to increase short circuit current by enhancing light trapping. In this study, four different types of textures, large V-groove, large U-groove, small V-groove, and small U-groove, were prepared by a wet etching process. Silicon substrates with V-grooves were fabricated by an anisotropic etching process using a KOH solution mixed with isopropyl alcohol (IPA), and the size of the V-grooves was controlled by varying the concentration of IPA. The isotropic etching process following anisotropic etching resulted in U-grooves and the isotropic etching time was determined to obtain U-grooves with an opening angle of approximately $60^{\circ}$. The results indicated that U-grooves had a larger diffuse reflectance than V-grooves and the reflectances of small grooves was slightly higher than those of large grooves depending on the size of the grooves. Then amorphous Si:H thin film solar cells were fabricated on textured substrates to investigate the light trapping effect of textures with different shapes and sizes. Among the textures fabricated in this work, the solar cells on the substrate with small U-grooves had the largest short circuit current, 19.20 mA/$cm^2$. External quantum efficiency data also demonstrated that the small, U-shape textures are more effective for light trapping than large, V-shape textures.

Keywords

References

  1. C. Leendertz, R. Stangl, T. F. Schulze, M. Schmidt and L. Korte, Phys. Status Solidi C, 7, 1005 (2010).
  2. S. K. Kim, J. C. Lee, S. J. Park, Y. J. Kim and K. H. Yoon, Sol. Energy Mater. Sol. Cells, 92, 298 (2008). https://doi.org/10.1016/j.solmat.2007.09.007
  3. M. G. Kang, S. J. Tark, J. Lee, C. S. Kim, D. Y. Jung, J. C. Lee, K. H. Yoon and D. Kim, Kor. J. Mater. Res., 21(2), 120 (2011) (in Korean). https://doi.org/10.3740/MRSK.2011.21.2.120
  4. M. Edwards, S. Bowden, U. Das and M. Burrows, Sol. Energy Mater. Sol. Cells, 92, 1373 (2008). https://doi.org/10.1016/j.solmat.2008.05.011
  5. Y. -J. Kim, J. -S. Cho, J. C. Lee, J. -S. Wang, J. S. Song and K. H. Yoon, Kor. J. Mater. Res., 19(5), 245 (2009) (in Korean). https://doi.org/10.3740/MRSK.2009.19.5.245
  6. I. Zubel, K. Rola and M. Kramkowska, Sens. Actuators A, 171, 436 (2011). https://doi.org/10.1016/j.sna.2011.09.005
  7. I. Zubel and M. Kramkowska, Sens. Actuators A, 101, 255 (2002). https://doi.org/10.1016/S0924-4247(02)00265-0
  8. D. Iencinella, E. Centurioni, R. Rizzoli and F. Zignani, Sol. Energy Mater. Sol. Cells, 87, 725 (2005). https://doi.org/10.1016/j.solmat.2004.09.020
  9. H. Park, J. S. Lee, S. Kwon, S. Yoon, H. Lim and D. Kim, J. Kor. Inst. Met. & Mater., 46, 835 (2008).
  10. K. E. Bean, IEEE Trans. Electron Dev., 25, 1185 (1978). https://doi.org/10.1109/T-ED.1978.19250
  11. J. M. Kim and Y. K. Kim, Sol. Energy Mater. Sol. Cells, 81, 239 (2004). https://doi.org/10.1016/j.solmat.2003.11.019
  12. L. Fesquet, S. Olibet, J. Damon-Lacoste, S. De Wolf, A. Hessler-Wyser, C. Monachon and C. Ballif, in Proceedings of the 34th IEEE PVSC(Philadelphia, PA, June 2009) p. 754.
  13. Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, H. Sakata, E. Maruyama and M. Tanaka, Sol. Energy Mater. Sol. Cells, 93, 670 (2009). https://doi.org/10.1016/j.solmat.2008.02.037
  14. T. Mueller, S. Schwertheim, N. Mueller, K. Meusinger, B. Wdowiak, O. Grewe and W. Fahrner, in Proceedings of the 35th IEEE PVSC(Honolulu, HI, June 2010) p. 683.
  15. M. G. Kang, S. Tark, J. C. Lee, C. S. Son, D. Kim, J. Cryst. Growth, 326, 14 (2011). https://doi.org/10.1016/j.jcrysgro.2011.01.042
  16. T. Maruyama, J. Bandai and S. Osako, Sol. Energy Mater. Sol. Cells, 64, 261 (2000). https://doi.org/10.1016/S0927-0248(00)00226-9
  17. J. Ge, Z. P. Ling, J. Wong, T. Mueller and A. G. Aberle, Energy Procedia, 15, 107 (2012). https://doi.org/10.1016/j.egypro.2012.02.013
  18. U. K. Das, M. Z. Burrows, M. Lu, S. Bowden and R. W. Birkmire, Appl. Phys. Lett., 92, 063504 (2008). https://doi.org/10.1063/1.2857465