DOI QR코드

DOI QR Code

Corrosion Behavior of Pyro-Carbon in Hot Lithium Molten Salt Under an Oxidation Atmosphere

산화성 고온 리튬용융염계 분위기에서 Pyro-Carbon의 부식거동

  • Received : 2012.12.03
  • Accepted : 2013.02.06
  • Published : 2013.02.27

Abstract

The electrolytic reduction of a spent oxide fuel involves liberation of the oxygen in a molten LiCl electrolyte, which is a chemically aggressive environment that is too crosive for typical structural materials. Therefore, it is essential to choose the optimum material for the process equipment for handling a molten salt. In this study, the corrosion behavior of pyro-carbon made by CVD was investigated in a molten LiCl-$Li_2O$ salt under an oxidation atmosphere at $650^{\circ}C$ and $750^{\circ}C$ for 72 hours. Pyro-carbon showed no chemical reactions with the molten salt because of its low wettability between pyro-carbon and the molten salt. As a result of XRD analysis, pyro-carbon exposed to the molten salt showed pure graphite after corrosion tests. As a result of TGA, whereas the coated layer by CVD showed high anti-oxidation, the non-coated layer showed relatively low anti-oxidation. The stable phases in the reactions were $C_{(S)}$, $Li_2CO_{3(S)}$, $LiCl_{(l)}$, $Li_2O$ at $650^{\circ}C$ and $C_{(S)}$, $LiCl_{(l)}$, $Li_2O_{(S)}$ at $750^{\circ}C$. $Li_2CO_{(S)}$ was decomposed at $750^{\circ}C$ into $Li_2O_{(S)}$ and $CO_{2(g)}$.

Keywords

References

  1. F. J. Kohl, G. J. Santoro, C. A. Stearns, G. C. Fryburg and D. E. Rosner, J. Electrochem. Soc., 126, 1054 (1979). https://doi.org/10.1149/1.2129173
  2. T. Ishitsuka and K. Nose, Corros. Sci., 44, 247 (2002). https://doi.org/10.1016/S0010-938X(01)00059-2
  3. B. P. Mohanty and D. A. Shores, Corros. Sci. 46, 2893 (2004). https://doi.org/10.1016/j.corsci.2004.04.013
  4. M. Spiegel, P. Biedenkopf and H. J. Grabke, Corros. Sci., 39, 1193 (1997). https://doi.org/10.1016/S0010-938X(97)00020-6
  5. S. Mitsushima, N. Kamiya and K. I. Ota, J. Electrochem. Soc., 137, 2713 (1990). https://doi.org/10.1149/1.2087031
  6. A. Ruh and M. Spiegel, Corros. Sci., 48, 679 (2006). https://doi.org/10.1016/j.corsci.2005.02.015
  7. H. R. Copson, J. Electrochem. Soc., 100, 257 (1953). https://doi.org/10.1149/1.2781115
  8. F. Colom andf A. Bodalo, Corros, Sci., 12, 731 (1972). https://doi.org/10.1016/S0010-938X(72)91224-3
  9. X. Ren and F. Wang, Surf. Coat. Technol., 201, 30 (2006). https://doi.org/10.1016/j.surfcoat.2005.10.042
  10. M. H. Guo, Q. M. Wang, P. L. Ke, J. Gong, C. Sun, R. F. Huang and L. S. Wen, Surf. Coat. Technol., 200, 3942 (2006). https://doi.org/10.1016/j.surfcoat.2004.12.005
  11. C. Batista, A. Portinha, R. M. Ribeiro, V. Teixeira and C. R. Oliveira, Surf. Coat. Technol., 200, 6783 (2006). https://doi.org/10.1016/j.surfcoat.2005.10.011
  12. E. T. Turkdogan, Physical Chemistry of High temperature Technology, p. 5-24, Academic Press, New York, USA (1980).