DOI QR코드

DOI QR Code

Peroxide Modification of Nylon 12 Elastomer

Peroxide 개질에 따른 Nylon 12 elastomer의 특성 연구

  • 최명찬 (한양대학교 바이오나노공학과) ;
  • 정지연 (한양대학교 바이오나노공학과) ;
  • 장영욱 (한양대학교 바이오나노공학과)
  • Received : 2012.11.29
  • Accepted : 2012.12.12
  • Published : 2013.03.31

Abstract

Nylon 12 elastomer was slightly crosslinked in molten state by the addition of small amount of dicumyl peroxide (DCP) as a crosslink agent and triallycyanuate (TAC) as a co-agent during melt compounding at $160^{\circ}C$ in an internal mixer. The effect of the peroxide crosslinking on mechanical, dynamic mechanical and rheological properties of the nylon 12 elastomer was investigated by means of tensile testing, dynamic mechanical analysis (DMA) and small amplitude oscillating rheometer, respectively. With modification, there is an improvement in tensile modulus and Young's modulus with decease in elongation at break. DMA results for peroxide modified nylon 12 elastomers demonstrated that the glass transiaiton temperature of PTMG segment shifted to higher temperature and the storage modulus remained constant above the melting temperature of nylon 12 segments. Melt rheological studies revealed that the peroxide modified nylon 12 elastomer exhibited a more solid like behavior and stronger shear thinning behavior compared to neat nylon 12 elastomer, which was more prominent at higher TAC content in the polymer matrix. The peroxide modified nylon 12 elastomer exhibited good elastic recoverability and improved mechanical properties without sacrificing melt processibilty, and especially the service temperature range increased as compared to neat nylon 12 elastomer.

용융상태에서 nylon 12 elastomer에 소량의 dicumyl peroxide (DCP) 와 triallyl cyanuate (TAC)를 첨가하여 nylon 12 elastomer를 부분적으로 가교시켰으며, 이에 따른 nylon 12 elastomer의 기계적, 동적기계적 그리고 유변학적 특성을 tensile test, DMA, small amplitude oscillating rheometer를 이용하여 각각 알아보았다. TAC의 함량이 증가함에 따라 인장탄성률과 영률은 증가하고, 파단신율은 감소하였다. DMA 측정결과, DCP로 부분적으로 가교시킨 nylon 12 elastomer의 PTMG상의 유리전이온도는 순수한 nylon 12 elstomer에 비해 증가하였고, storage modulus는 nylon 12상의 용융온도 이상에서도 거의 일정한 값을 나타내었다. 부분적으로 가교시킴에 따른 유변학적 특성의 변화는 TAC의 함량이 증가함에 따라 solid like behavior와 shear thinning behavior가 점점 뚜렷하게 나타남을 알 수 있었다. 이로부터 nylon 12 elastomer를 용융상태에서 부분적으로 가교시킴으로써 용융가공성을 저하시키지 않으면서, 기계적 물성은 효과적으로 향상시킬 수 있었으며, 특히, nylon 12 elastomer의 사용가능 온도범위를 증가시킬 수 있었다.

Keywords

References

  1. V. D. Ramos, H. M. da Costa, A. O. Pereira, M. C. G. Rocha and A. S. Gomes, "Study of low concentrations of dicymyl peroxide on the molecular structure modification of LLFPE by reactive extrusion", Polym. Test. 23, 949 (2004) https://doi.org/10.1016/j.polymertesting.2004.04.012
  2. D. J. Kim, H. J. Kang and K. H. Seo, "Peroxide Modification of Poly(butylenes adiphate-co-succinate)", J. Appl. Polym. Sci. 81, 637 (2001) https://doi.org/10.1002/app.1479
  3. D. J. Kim, W. S. Kim, D. H. Lee, K. E. Min, L. S. Park, I. K. Kang, I. R. Jeon and K. H. Seo, "Modification of Poly(butylene succinate) with Peroxide: Crosslinking, Physical and Thermal Properties, and Biodegradation", J. Appl. Polym. Sci. 81, 1115 (2001) https://doi.org/10.1002/app.1534
  4. J. C. Garcia-quesada and M. GILBERT, " Peroxide Crosslinking of Unplasticized Poly(vinyl chloride)", J. Appl. Polym. Sci. 77, 2657 (2000) https://doi.org/10.1002/1097-4628(20000919)77:12<2657::AID-APP130>3.0.CO;2-G
  5. Y. T. Sung, C. K. Kum, H. S. Lee, J. S. Kim, H. G. Yoon and W. N. Kim, "Effects of crystallinity and crosslinking on the thermal and rheological properties of ethylene vinyl acetate copolymer", Polym. 46, 11844 (2005) https://doi.org/10.1016/j.polymer.2005.09.080
  6. J. K. Kim, W. H Kim and D. H Lee, "Adhesion properties of UV crosslinked polystyrene-block-polybutadieneblock- polystyrene copolymer and tackifier mixture", Polym. 43, 5005 (2002) https://doi.org/10.1016/S0032-3861(02)00327-0
  7. C. Wang and C. I. Chang, "Fracture Energies of Styrene-Butadiene-Styrene Block Copolymers (II). Strength at High Temperatures", J. Polym. Sci. : Part B: Polym. Phys. 35, 2017 (1997) https://doi.org/10.1002/(SICI)1099-0488(19970930)35:13<2017::AID-POLB3>3.0.CO;2-T
  8. S. Sakurai, K. Iwane and S. Nomura, "Morphology of Poly(styrene-block-butadiene-block-styrene) Triblock Copolymers Cross-Linked in the Disordered State", Macromol. 26, 5479 (1993) https://doi.org/10.1021/ma00072a028
  9. S. Fakirov, "Handbook of Condensation Thermoplastic Elastomer", ed. by R.-P. Eustache, 1st ed, p. 263, Wiley-VCH Publishers, Weinheim, Germany, 2005
  10. N. R. Legge, G. Holden and H. E. Schroeder, "Thermoplastic Elastomers", ed. by R. G. Nelb and A. T. Chen, 2nd ed, p. 227, Hanser Publishers, Munich, Germany, 1996
  11. Y. T. Lim and O.O. Park., "Rheological evidence for the microstructure of intercalated polymer/layered silicate nanocomposites", Macromol. Rapid Commun. 21, 231 (2000). https://doi.org/10.1002/(SICI)1521-3927(20000301)21:5<231::AID-MARC231>3.0.CO;2-3
  12. S. S. Ray, P. Maity , M. Okamoto and K. K. Ueda, "New Polylactide/Layered Silicate Nanocomposites. 1. Preparation, Characterization, and Properties", Macromol. 35, 3104 (2002). https://doi.org/10.1021/ma011613e
  13. R. G. Larson, "The structure and rheology of complex fluids", ed. by R. G. Larson, 1st ed, p. 3, Oxford University Press, New York, 1999