DOI QR코드

DOI QR Code

Effect of Damper Between Maglev Vehicles on Curve Negotiation

자기부상열차 차간 댐퍼의 곡선주행에의 효과 분석

  • Received : 2012.07.20
  • Accepted : 2013.01.03
  • Published : 2013.04.01

Abstract

In a magnetic train set composed of more than two cars, the installation of dampers between cars is carefully considered for improving both the ride quality and the safety, particularly during curve negotiation. In this study, a dynamic simulation of the ride quality and curve negotiation of a Maglev vehicle was carried out. The dynamic model is developed based on multibody dynamics. The presented full vehicle multibody dynamic model integrates the electromagnet model and its control algorithm. By using this model, the effects of the dampers are numerically analyzed. The proposed damper is installed on the vehicle and tested to analyze its effects. In this study, the simulation and measured results of the vehicle behavior and ride quality are discussed.

반경이 작은 곡선이 종종 존재하는 도시 내에서 운행되는 도시형자기부상열차는 전자석과 레일 사이에 기계적 접촉 없이 곡선주행을 할 수 있어야 한다. 특히, 안내제어가 없는 자기부상열차에 있어서는 승차감을 확보하면서 곡선추종성능을 향상시키기 위하여 차간 댐퍼의 설치가 고려된다. 자기부상 차량용 차간 댐퍼는 곡선 진출입시 차량에 발생하는 요(Yaw) 방향의 진동을 최소화할 수 있어야 함과 동시에, 부상 전자석이 레일과 접촉이 없도록 해야 한다. 본 논문에서는 곡선주행에서의 차간 댐퍼의 승차감과 곡선추종성에의 영향을 분석하는데 목적이 있다. 이를 위하여 부상제어, 차량, 대차 및 궤도가 포함된 동역학 모델을 이용한 동특성 시뮬레이션이 수행된다. 시뮬레이션을 통하여 차간 댐퍼의 효과가 분석되고 시험 선로에서의 주행시험을 실시하여 해석 결과의 신뢰성에 대한 검증이 이루어졌다.

Keywords

References

  1. Yim, B. H. and Han, H. S., 2009, "Curve Negotiation Analysis of a Maglev Vehicle Utilizing Electromagnetic Suspension System," Vehicle System Dynamics, Vol. 47, No. 10, pp. 1287-1304. https://doi.org/10.1080/00423110802632071
  2. Matumoto, Fujii, Sato, Mizuma and Fuzima, "Vehicle Dynamics and Riding Quality of a Maglev-Type Urban Transportation System CHSST-100," Proceedings of the International Conference on Speedup Technology for Railway and Maglev Vehicles, Vol.1, Nov 22-26.1993
  3. Sinha, P. K., 1987, Electromagnetic Suspension Dynamics & Control, Peter Peregrinus Ltd, London, United Kingdom.
  4. Han, H.S., 2003, "A Study on the Dynamic Modeling of a Magnetic Levitation Vehicle," JSME International, Vol. 46, No. 4, pp. 1497-1501. https://doi.org/10.1299/jsmec.46.1497
  5. Shabana, A.A., 2007, Railroad Vehicle Dynamics: A Computational Approach, Taylor & Francis Group, USA.
  6. Han, H.S., Yim, B.H., Lee, N.J., Kim, Y.J., and Kim, B.H., 2009, "Prediction of Ride Quality of a Maglev Vehicle Using a Full Vehicle Multi-Body Dynamic Model," Vehicle System Dynamics, Vol. 47, No. 10, pp. 1-16. https://doi.org/10.1080/00423110701877512
  7. Kim, K. J., 2011, "Analysis on Effect of Curving Negotiation and Ride Quality of Maglev Vehicle Utilizing Suspension Elements," M.S. Thesis, Chungnam National University.
  8. LMS Virtual.lab Motion Users Manual, LMS International.
  9. Hur, H. M., Park, J. H and You, W. H., 2011, "Analysis on the Behavior of the Lateral Damper of the Roll-Stock Running Railway," KSPE, pp.1007-1008.
  10. Zhao, C.F., Zhai, W.M. and Wang, K.Y., 2002 "Dynamic Responses of the Low-Speed Maglev Vehicle on the Curved Guideway," Vehicle System Dynamics, Vol. 38, No. 3, pp.185-210. https://doi.org/10.1076/vesd.38.3.185.8289

Cited by

  1. Analysis of Dynamic Interaction Between Maglev Vehicle and Guideway vol.37, pp.12, 2013, https://doi.org/10.3795/KSME-A.2013.37.12.1559
  2. Study on Running Safety of EMS-Type Maglev Vehicle Traveling over a Switching System vol.38, pp.11, 2014, https://doi.org/10.3795/KSME-A.2014.38.11.1309
  3. Effect of Lateral Deformations of Guideway on Guidance Characteristics of Maglev Train vol.39, pp.11, 2015, https://doi.org/10.3795/KSME-A.2015.39.11.1161