DOI QR코드

DOI QR Code

Empirical Correlations for Breakup Length of Liquid Jet in Uniform Cross Flow-A Review

  • No, Soo-Young (Dept. of Biosystems Engineering, Chungbuk National University)
  • Received : 2012.12.28
  • Accepted : 2013.03.13
  • Published : 2013.03.30

Abstract

The empirical correlations for the prediction of breakup length of liquid jet in uniform cross flow are reviewed and classified in this study. The breakup length of liquid jets in cross flow was normally discussed in terms of the distances from the nozzle exit to the column breakup location in the x and y directions, called as column fracture distance and column fracture height, respectively. The empirical correlations for the prediction of column fracture distance can be classified as constant form, momentum flux ratio form, Weber number form and other parameter form, respectively. In addition, the empirical correlations for the prediction of column fracture height can be grouped as momentum flux ratio form, Weber number form and other parameter form, respectively. It can be summarized that the breakup length of liquid jet in a cross flow is a basically function of the liquid to air momentum flux ratio. However, Weber number, liquid-to-air viscosity ratio and density ratio, Reynolds number or Ohnesorge number were incorporated in the empirical correlations depending on the investigators. It is clear that there exist the remarkable discrepancies of predicted values by the existing correlations even though many correlations have the same functional form. The possible reasons for discrepancies can be summarized as the different experimental conditions including jet operating condition and nozzle geometry, measurement and image processing techniques introduced in the experiment, difficulties in defining the breakup location etc. The evaluation of the existing empirical correlations for the prediction of breakup length of liquid jet in a uniform cross flow is required.

Keywords

References

  1. J. M. Desantes, J. Arregle, J. Lopez and J. M. Garcia, Atomization and Sprays, 16, 511-530, 2006. https://doi.org/10.1615/AtomizSpr.v16.i5.30
  2. J. M. Nouri and J. H. Whitelaw, Atomization and Sprays, 17, 621-640, 2007. https://doi.org/10.1615/AtomizSpr.v17.i7.30
  3. O. M. Elshamy and S. M. Jeng, 18th Annual Conf. on Liquid Atomization and Spray Systems, ILASS-Americas, Irvine, CA, May, 2005.
  4. A. R. Karagozian, Progress in Energy and Combustion Science, 36, 531-553, 2010. https://doi.org/10.1016/j.pecs.2010.01.001
  5. S. Ghosh and J. C. R. Hunt, Journal of Fluid Mechanics, 365, 109-136, 1998. https://doi.org/10.1017/S0022112098001190
  6. J. C. Phillips and P. C. H. Miller, Journal of Agricultural Engineering Research, 72, 161-170, 1999. https://doi.org/10.1006/jaer.1998.0359
  7. L. K. B. Li, S. L. Green, M. H. Davy and D. T. Eadie, Atomization and Sprays, 20(8), 697-720, and 721-735, 2010. https://doi.org/10.1615/AtomizSpr.v20.i8.30
  8. J. A. Schetz, First Symposium (ILASS-Japan) on Atomization, Yokohama, Japan, 21-22 Dec, 1992, 1-13.
  9. A. H. Lefebvre, Atomization and Sprays, Hemisphere, 1989.
  10. R. Ragucci, A. Bellofiore and A. Cavaliere, Atomization and Sprays, 17, 47-70, 2007. https://doi.org/10.1615/AtomizSpr.v17.i1.20
  11. S. Y. No, 24th European Conference on Liquid Atomization and Spray Systems, Estoril, Portugal, 5-7 Sept. 2011.
  12. S. Y. No, ILASS-Korea Journal, 16(4), 176-185, 2011.
  13. J. M. Desantes, J. Arregle, J. J. Lopez and J. M. Garcia, Atomization and Sprays, 16, 511-530, 2006. https://doi.org/10.1615/AtomizSpr.v16.i5.30
  14. J. M. Desantes, J. Arregle, J. J. Lopez and J. M. Garcia, Fuel, 85, 2120-2132, 2006. https://doi.org/10.1016/j.fuel.2006.03.025
  15. S. B. Tambe and S.-M. Jeng, 21st Annual Conf. on Liquid Atomization and Spray Systems, ILASS-Americas, Orlando, Florida, May 18-21, 2008.
  16. O. M. Elshamy, S. B. Tambe, J. Cai and S.-M. Jeng, 45th AIAA Aerospace Sciences Meeting and Exhibit, 8- 11 Jan. 2007, Reno, Nevada, AIAA 2007-1340.
  17. S. B. Tambe, O. M. Elshamy and S.-M. Jeng, 43rd AIAA /ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit, 8-11 July 2007, Cincinnati, OH, AIAA 2007-5695.
  18. T. Inamura, N. Nagai, T. Hirai and H. Asano, Proc. of ICLASS-91, Gaithersburg, MD, USA, July, 1991, 839-846.
  19. M. Costa, M. J. Melo, J. M. M. Sousa and Y. Levy, AIAA Journal, 44(3), 646-653, 2006. https://doi.org/10.2514/1.10887
  20. S. B. Tambe, S.-M. Jeng, H. Mongia and G. Hsiao, 43rd AIAA Aerospace Sciences Meeting and Exhibit, 10-13 Jan. 2005, Reno, Nevada, AIAA paper 2005-731, 2005.
  21. M. Birouk, T. Stabler and B. J. Azzopardi, Particle and Particle Systems Characterization, 20, 39-46, 2003. https://doi.org/10.1002/ppsc.200390003
  22. P.-K.Wu, K. A. Kirkendall and R. P. Fuller, Journal of Propulsion and Power, 13(1), 64-73,1997. https://doi.org/10.2514/2.5151
  23. A. Bellofiore, R. Ragucci, P. Di Martino and A. Cavaliere, Proc. of 10th Int'l Conf. on Liquid Atomization and Spray Systems, Kyoto, Japan, Aug. 27-Sept. 1, 2006, Paper ID F4-01-248.
  24. A. Bellofiore, A. Cavaliere and R. Ragucci, Combustion Science and Technology, 179, 319-342, 2007. https://doi.org/10.1080/00102200600809563
  25. M. Birouk, B. J. Azzopardi and T. Stabler, Particle and Particle Systems Characterization, 20, 283-289, 2003. https://doi.org/10.1002/ppsc.200390034
  26. K. Ahn, J. Kim and Y. Yoon, Atomization and Sprays, 16, 15-34, 2006. https://doi.org/10.1615/AtomizSpr.v16.i1.20
  27. Q. Wang, U. M. Mondragon, C. T. Brown and V. G. McDonell, Atomization and Sprays, 21(3), 203-219, 2011. https://doi.org/10.1615/AtomizSpr.2011002848
  28. K. A. Sallam, C. Aalburg and G. M. Faeth, AIAA Journal, 42(12), 2529-2540, 2004. https://doi.org/10.2514/1.3749
  29. M. Birouk, B. J. Azzopardi and T. Stablend, Proc. of 9th Int'l Conf. on Liquid Atomization and Spray Systems- ICLASS 2003, Sorrento, Italy, July 13-17, 2003, paper ID 1-12.
  30. R. P. Fuller, P.-K. Wu and K. A. Kirkendall, AIAA Journal, 38(1), 64-72, 2000. https://doi.org/10.2514/2.923
  31. R. Ragucci, A. Bellofiore and A. Cavaliere, 19th Annual Meeting of Liquid Atomization and Spray Systems- ILASS-Europe, Notingham, UK, 6-8 Sept. 2004.
  32. R. Ragucci, A. Bellofiore and A. Cavaliere, Proceedings of the Combustion Institute, 31, 2231-2238, 2007. https://doi.org/10.1016/j.proci.2006.07.204

Cited by

  1. Liquid Jets in Subsonic Air Crossflow at Elevated Pressure vol.137, pp.4, 2014, https://doi.org/10.1115/1.4028565
  2. Effect of Orifice Geometry on Column Trajectories of Liquid Jets in Crossflows pp.2093-2480, 2019, https://doi.org/10.1007/s42405-018-0130-3