DOI QR코드

DOI QR Code

Effect of Flow Structure Inside Nozzle on the Liquid Jet Breakup of Elliptical Nozzle

타원형 노즐의 내부유동 구조가 액주분열에 미치는 영향

  • 구건우 (경북대학교 기계연구소) ;
  • 홍정구 (경북대학교 기계공학부)
  • Received : 2013.01.24
  • Accepted : 2013.03.12
  • Published : 2013.03.30

Abstract

An experimental study was performed to investigate the liquid jet breakup of a circular nozzle and elliptical nozzles. Furthermore Numerical simulation was attempted to investigate the internal flow structure in the circular and elliptical nozzles. This study showed that the disintegration characteristics of the liquid jet of elliptical nozzles were much different from those of the circular nozzle. The liquid jet issued from the elliptical nozzles became more unstable at the same injection pressure. Surface breakup was observed at the jet issued from the elliptical nozzles with the increase of injection pressure. The disintegration of the liquid jet of elliptical nozzles was related with the internal flow structure which is revealed from the numerical simulation.

Keywords

References

  1. 이상용, 액체의 미립화, 민음사, 1996.
  2. Y. Hayashi, T. Furuhata and M. Arai, "Effect of nozzle hole shape on behavior of diesel spray", 14th Symposium (ILASS-JAPAN) on Atomization 2005, 2005, pp. 37-42.
  3. G. Yunyi, L. Changwen, H. Yezhou and P. Zhijun, "An experimental study on droplet size characteristics and air entrainment of elliptic sprays", SAE Tech. Pap, 1998, 982546.
  4. C. W. Lee, Y. J. Lee, J. W. Park, and K. Terasima, "Effect of nozzle hole configuration on spray characteristics for diesel engine", 10th Annual Conf. on Liquid Atomization and Spray Systems, Seoul, Korea, Oct 13-14, 2005, pp. 267-272.
  5. L. Jacobsson, E. Winklhofer and J. Chomiak, "Injection orifice shape: Effects on spray characteristics and heat-release rate in a large-size single-cylinder diesel engine", SAE Tech. Pap., 1999, 1999-01-3490.
  6. T. Messina and S. Acharya, "Characteristics of an acoustically modulated spray issued from circular and elliptical orifice nozzles", Atomization Sprays, Vol. 16, 2006, pp. 331-348. https://doi.org/10.1615/AtomizSpr.v16.i3.60
  7. E. J. Gutmark and F. F. Grinstein, "Flow control with noncircular jets", Annu. Rev. Fluid Mech., Vol. 31, 1999, pp. 239-272. https://doi.org/10.1146/annurev.fluid.31.1.239
  8. T. V. Kasyap, D. Sivakumar and B. N. Raghunandan, "Breakup of liquid jets emanating from elliptical orifices at low flow condition", Atomization Sprays, vol. 18, 2008, pp. 645-668. https://doi.org/10.1615/AtomizSpr.v18.i7.30
  9. Carsten B, Mixture formation in internal combustion engines: Springer, 2006.
  10. A. H. Lefebvre, Atomization and Sprays, New york: Hemisphere Publishing Corporation, 1989.
  11. P. K. Wu, R. F. Miranda and G. M. Faeth, "Effects of initial flow conditions on primary breakup of non-turbulent and turbulent round liquid jets", Atomization Sprays, Vol. 5, 1995, pp. 175-196. https://doi.org/10.1615/AtomizSpr.v5.i2.40
  12. H. Hiroyasu, M. Arai and M. Shimizu, "Break-up length of a liquid jet and internal flow in a nozzle", Proc. of the Fifth Int'l Conf. on Liquid Atomization and Spray Systems, Gaithersburg, MD, USA, 1991, pp. 275-282.
  13. F. Payri, V. Bermudez, R. Payri and F. J. Salvador, "The Influence of cavitation on the internal flow and the spray characteristics in diesel injection nozzle", Fuel, Vol. 83, 2004, pp. 419-431. https://doi.org/10.1016/j.fuel.2003.09.010
  14. J. K. Song, K. B. Ahn, M. K. Kim and Y. B. Yoon, "Effects of orifice internal flow on liquid jets in subsonic crossflows", J. Propul. Power, Vol. 27, 2011, pp. 608-619. https://doi.org/10.2514/1.B34011
  15. A. Sou, M. I. Maulana, K. Isozaki, S. Hosokawa and A. Tomiyama, "Effects of nozzle geometry on cavitation in nozzles of pressure atomizer", J. Fluid Sci. Tech., Vol. 3, No. 5, 2008, pp. 622-632. https://doi.org/10.1299/jfst.3.622
  16. W. Bergwerk, "Flow pattern in diesel nozzle spray holes", Proc. Inst. Mech. Eng., 1959, pp. 655-660.
  17. K. Ramamurthi, K. Nandakumar and R. Patnaik, "Twostep start transient with long feedlines discharging liquid through sharp-edged cylindrical nozzles", Atomization Sprays, Vol. 12, 2002, pp. 283-297. https://doi.org/10.1615/AtomizSpr.v12.i123.150
  18. N. Tamaki, M. Shimizu, K. Nishida and H. Hiroyasu, "Effects of cavitation and internal flow on atomization of a liquid jet", Atomization Sprays, Vol. 8, 1998, pp. 179-197. https://doi.org/10.1615/AtomizSpr.v8.i2.30
  19. S. B. Martynov, D. J. Mason and M. R. Heikal, "Numerical simulation of cavitation flows based on their hydrodynamic similarity", Int. J. Engine Research, Vol. 7, 2006, pp. 283-296. https://doi.org/10.1243/14680874JER04105
  20. 한동식, 김현규, 장영준, 전충환, "노즐 형상비에 따른 캐비테이션 및 내부유동 특성에 관한 수치적 연구", 한국액체미립화학회지, 제13권, 제4호, 2008, pp. 200-205.
  21. H. V. Tafreshi and H. Pourdeyhimi, "Simulating cavitation and hydraulic flip inside hydroentangling nozzles", Textile Res. J., Vol. 74, 2004, pp. 359-364. https://doi.org/10.1177/004051750407400413
  22. T. Oda, M. Hiratsuka, Y. Goda, S. Kanaike and K. Ohsawa, "Experimental and numerical investigation about internal cavitating flow and primary atomization of a large-scaled VCO diesel injector with eccentric needle", 23th Annual Conf. on Liquid Atomization and Spray Systems, Brno, Czech Republic, Sep 6-8, 2010. [CD-ROM]
  23. S. Som, M. B. Alejandro and S. K. Aggarwal, "Evaluation of new criteria for cavitation inception in diesel injectors", 11th Int'l Conf. on Liquid Atomization and Spray Systems, Vail, Colorado, USA, July 26-30, 2009. [CD-ROM]
  24. S. Som, S. K. Aggarwal, E. M. EI-Hannouny and D. E. Longman, "Investigation of nozzle flow and cavitation characteristics in a diesel injector", ASME J. Eng. Gas Turb. Power, Vol. 132, issue 4, 2010.
  25. J. G. Hong, K. W. Ku, S. R. Kim and C. W. Lee, "Effect of cavitation in circular nozzle and elliptical nozzles on the spray characteristic", Atomization Sprays, Vol. 20, 2010, pp. 877-886. https://doi.org/10.1615/AtomizSpr.v20.i10.40
  26. J. G. Hong, K. W. Ku and C. W. Lee, "Numerical simulation of the cavitating flow in an elliptical nozzle", Atomization Sprays, Vol. 21, 2011, pp. 237-248. https://doi.org/10.1615/AtomizSpr.2011003127
  27. K. W. Ku, J. G. Hong and C. W. Lee, "Effect of internal flow structure in circular and elliptical nozzle on spray characteristics", Atomization Sprays, Vol. 21, 2012, pp. 655-672.
  28. A. K. Singhal, M. M. Athavale, L. Huiying and Y. Jiang, "Mathematical basis and validation of the full cavitation model", ASME J. Fluids Eng., Vol. 124, 2002, pp. 617-624. https://doi.org/10.1115/1.1486223
  29. Fluent Inc, Fluent user's guide volume 3, Fluent Inc, 2003, pp. 22.1-22.96.
  30. 김성열, 구건우, 홍정구, 이충원, "노즐 오리피스 형상에 따른 Discharge coefficient와 cavitation에 관한 실험적 연구", 대한기계학회 논문집 B권, 제34권, 제10 호, 2010, pp. 933-939.