DOI QR코드

DOI QR Code

Efficiency of Gas-Phase Ion Formation in Matrix-Assisted Laser Desorption Ionization with 2,5-Dihydroxybenzoic Acid as Matrix

  • Park, Kyung Man (Department of Chemistry, Seoul National University) ;
  • Ahn, Sung Hee (Department of Chemistry, Seoul National University) ;
  • Bae, Yong Jin (Department of Chemistry, Seoul National University) ;
  • Kim, Myung Soo (Department of Chemistry, Seoul National University)
  • Received : 2012.12.01
  • Accepted : 2012.12.26
  • Published : 2013.03.20

Abstract

Numbers of matrix- and analyte-derived ions and their sum in matrix-assisted laser desorption ionization (MALDI) of a peptide were measured using 2,5-dihydroxybenzoic acid (DHB) as matrix. As for MALDI with ${\alpha}$-cyano-4-hydroxy cinnamic acid as matrix, the sum was independent of the peptide concentration in the solid sample, or was the same as that of pure DHB. This suggested that the matrix ion was the primary ion and that the peptide ion was generated by matrix-to-peptide proton transfer. Experimental ionization efficiencies of $10^{-5}-10^{-4}$ for peptides and $10^{-8}-10^{-7}$ for matrices are far smaller than $10^{-3}-10^{-1}$ for peptides and $10^{-5}-10^{-3}$ for matrices speculated by Hillenkamp and Karas. Number of gas-phase ions generated by MALDI was unaffected by laser wavelength or pulse energy. This suggests that the main role of photo-absorption in MALDI is not in generating ions via a multi-photon process but in ablating materials in a solid sample to the gas phase.

Keywords

References

  1. Hillenkamp, F.; Peter-Katalini , J. MALDI MS. A Practical Guide to Instrumentation, Methods and Applications; Wiley-VCH:Weinheim, Germany, 2007.
  2. Dreisewerd, K. Chem. Rev. 2003, 103, 395. https://doi.org/10.1021/cr010375i
  3. Cole, R. B. Electrospray and MALDI Mass Spectrometry Fundamentals, Instrumentation, Practicalities, and Biological Applications, 2nd ed.; John Wiley & Sons: Hoboken, New Jersey, 2010.
  4. Knochenmuss, R. Analyst. 2006, 131, 966. https://doi.org/10.1039/b605646f
  5. McCombie, G.; Knochenmuss, R. J. Am. Soc. Mass Spectrom. 2006, 17, 737. https://doi.org/10.1016/j.jasms.2006.02.005
  6. Chen, X.; Carroll, J. A.; Beavis, R. C. J. Am. Soc. Mass Spectrom. 1998, 9, 885. https://doi.org/10.1016/S1044-0305(98)00059-2
  7. Niu, S.; Zhang, W.; Chait, B. T. J. Am. Soc. Mass Spectrom. 1998, 9, 1.
  8. Bae, Y. J.; Park, K. M.; Kim, M. S. Anal. Chem. 2012, 84, 7107. https://doi.org/10.1021/ac3014077
  9. Bae, Y. J.; Shin, Y. S.; Moon, J. H.; Kim, M. S. J. Am. Soc. Mass Spectrom. 2012, 23, 1326. https://doi.org/10.1007/s13361-012-0406-y
  10. Bae, Y. J.; Moon, J. H.; Kim, M. S. J. Am. Soc. Mass Spectrom. 2011, 22, 1070. https://doi.org/10.1007/s13361-011-0115-y
  11. Demeure, K.; Gabelica, V.; De Pauw, E. A. J. Am. Soc. Mass Spectrom. 2010, 21, 1906.
  12. Demeure, K.; Quinton, L.; Gabelica, V.; De Pauw, E. Anal. Chem. 2007, 79, 8678. https://doi.org/10.1021/ac070849z
  13. Knochenmuss, R.; Zhigilei, L. V. J. Mass Spectrom. 2010, 45,333.
  14. Strupat, K.; Karas, M.; Hillenkamp, F. Int. J. Mass Spectrom. Ion Processes 1991, 111, 89. https://doi.org/10.1016/0168-1176(91)85050-V
  15. Ha, M.; In, Y.; Maeng, H.; Zee, O. P.; Lee, J.; Kim, Y. Mass Spectrom. Lett. 2011, 2, 61. https://doi.org/10.5478/MSL.2011.2.3.061
  16. Bae, Y. J.; Yoon, S. H.; Moon, J. H.; Kim, M. S. Bull. Korean Chem. Soc. 2010, 31, 92. https://doi.org/10.5012/bkcs.2010.31.01.092
  17. Moon, J. H.; Shin, Y. S.; Bae, Y. J.; Kim, M. S. J. Am. Soc. Mass Spectrom. 2012, 23, 162. https://doi.org/10.1007/s13361-011-0278-6
  18. Yoon, S. H.; Moon, J. H.; Kim, M. S. J. Am. Soc. Mass Spectrom. 2010, 21, 1876.
  19. Moon, J. H.; Yoon, S. H.; Kim, M. S. J. Phys. Chem. B 2009, 113, 2071. https://doi.org/10.1021/jp810077e
  20. Mowry, C. D.; Johnston, M. V. Rapid Commun. Mass Spectrom. 1993, 7, 569. https://doi.org/10.1002/rcm.1290070702
  21. Quist, A. P.; Huth-Fehre, T.; Sundqvist, B. U. R. Rapid Commun. Mass Spectrom. 1994, 8, 149. https://doi.org/10.1002/rcm.1290080204
  22. Allwood, D. A.; Dreyfus, R. W.; Perera, I. K.; Dyer, P. E. Rapid Commun. Mass Spectrom. 1996, 10, 1575. https://doi.org/10.1002/(SICI)1097-0231(199610)10:13<1575::AID-RCM658>3.0.CO;2-C
  23. Westmacott, G.; Ens, W.; Hillenkamp, F.; Dreisewerd, K.; Schürenberg, M. Int. J. Mass Spectrom. 2002, 221, 67. https://doi.org/10.1016/S1387-3806(02)00898-9
  24. Zhigilei, L. V.; Leveugle, E. Chem. Rev. 2003, 103, 321. https://doi.org/10.1021/cr010459r

Cited by

  1. Ion-to-Neutral Ratios and Thermal Proton Transfer in Matrix-Assisted Laser Desorption/Ionization vol.26, pp.7, 2015, https://doi.org/10.1007/s13361-015-1112-3
  2. Fluorescence spectroscopy of UV-MALDI matrices and implications of ionization mechanisms vol.141, pp.16, 2014, https://doi.org/10.1063/1.4898372