DOI QR코드

DOI QR Code

Relationship Between the Structure and the Superconductivity in LaFeAsO

  • Jung, Dongwoon (Department of Chemistry Wonkwang University) ;
  • Cho, Sungwoo (Department of Chemistry Wonkwang University) ;
  • Lee, In-Ja (Department of Advanced Materials Chemistry, Dongguk University)
  • Received : 2012.12.13
  • Accepted : 2012.12.27
  • Published : 2013.03.20

Abstract

The electronic structure of LaFeAsO was analyzed by tight-binding band calculation based upon the normal and shrunk lattices. A strong Fermi surface nesting was found in the normal LaFeAsO, while most of the nesting area was disappeared in the shrunk LaFeAsO. It was found, therefore, high pressure atmosphere is required to become a superconductor for LaFeAsO by suppressing the SDW (spin density wave) state through the disappearance of the Fermi surface nesting.

Keywords

References

  1. Wu, M. K.; Ashburn, J. R.; Torng, C. J.; Hor, P. H.; Meng, R. L.; Gao, L.; Huang, Z. J.; Wang, Y. Q.; Chu, C. W. Phys. Rev. Lett. 1988, 58, 908.
  2. Sheng, Z. Z.; Hermann, A. M. Nature 1988, 332, 138. https://doi.org/10.1038/332138a0
  3. Sleight, A. W. Science 1988, 242, 1519. https://doi.org/10.1126/science.242.4885.1519
  4. Subramanian, M. A.; Parise, J. B.; Calabrese, J. C.; Torardi, C. C.; Gopalakrishnan, J.; Sleight, A. W. J. Solid State Chem. 1988, 77,192. https://doi.org/10.1016/0022-4596(88)90108-9
  5. Ihara, H.; Sigise, R.; Hayashi, K.; Terada, N.; Jo, M.; Hirabayashi, M.; Negishi, A.; Atoda, N.; Oyanagi, H.; Shimomura, T.; Ohash, S. Phys. Rev. 1988, B38, 11952.
  6. Hebard, A. F.; Roseinsky, M. J.; Haddon, R. C.; Murphy, D. W.; Glarum, S. H.; Palstra, T. T. M.; Ramirez, A. P.; Kortan, A. R. Nature 1991, 350, 660. https://doi.org/10.1038/350660a0
  7. Nagamatsu, J.; Nakagawa, N.; Muranaka, T.; Zenitani, J.; Akimitsu, J. Nature 2001, 410, 63. https://doi.org/10.1038/35065039
  8. Yonezawa, S.; Muraoka, Y.; Hiroi, Z. J. Phys. Condens. Matter 2004, 16, L9. https://doi.org/10.1088/0953-8984/16/3/L01
  9. Matthias, B. T.; Geballe, T. H.; Longinotti, L. D.; Corenzwit, E.; Hull, G. W.; Matthias, R. H. B. T.; Geballe, T. H.; Longinotti, L. D.; Corenzwit, E.; Hull, G. W.; Williens, R. H.; Maita, J. P. Science 1967, 156, 645. https://doi.org/10.1126/science.156.3775.645
  10. Gavaler, J. R. Appl. Phys. Lett. 1973, 23, 480. https://doi.org/10.1063/1.1654966
  11. Kamihara, Y.; Watanabe, T.; Hirano, M.; Hosono, H. J. Am. Chem. Soc. 2008, 130, 3296. https://doi.org/10.1021/ja800073m
  12. Ren, Z. A.; Yang, J.; Lu, W.; Yi, W.; Shen, X. L.; Li, Z. C.; Che, G. C.; Dong, X. L.; Sun, L. L.; Zhou, F.; Zhao, Z. X. Europhys. Lett. 2008, 82, 57002. https://doi.org/10.1209/0295-5075/82/57002
  13. Clarina, de la C.; Huang, Q.; Lynn, J. W.; Li, J. Y.; Ratcliff, W.; Zarestky, J. L.; Mook, H. A.; Chen, G. F.; Luo, J. L.; Wang, N. L.; Dai, P. C. Cond-mat. arXiv: 2008, 0804.0795.
  14. McGuire, M. A.; Christianson, A. D.; Sefat, A. S.; Jin, R.; Payzant, E. A.; Sales, B. C.; Lumsden, M. D.; Mandrus, D. Cond-mat. arXiv: 2008, 0804.0796.
  15. Ren, Z. A.; Che, G. C.; Dong, X. L.; Yang, J.; Lu, W.; Yi, W.; Shen, X. L.; Li, Z. C.; Sun, L. L.; Zhou, F.; Zhao, Z. X. Europhys. Lett. 2008, 83, 17002. https://doi.org/10.1209/0295-5075/83/17002
  16. Takahashi, H.; Igawa, K.; Arii, K.; Kamihara, Y.; Hirano, M.; Hosono, H. Nature 2008, 453, 376. https://doi.org/10.1038/nature06972
  17. Hoffmann, R. J. Chem. Phys. 1963, 39, 1397. https://doi.org/10.1063/1.1734456
  18. Ammeter, J. H.; Bergi, H.-B.; Thibeault, J.; Hoffmann, R. J. Am. Chem. Soc. 1978, 100, 3686. https://doi.org/10.1021/ja00480a005
  19. Clementi, E.; Roetti, C. Atomic Data Nuclear Data Tables 1974, 14, 177. https://doi.org/10.1016/S0092-640X(74)80016-1
  20. McLeen, A. D.; McLeen, R. S. Atomic Data Nuclear Data Tables 1981, 26, 197. https://doi.org/10.1016/0092-640X(81)90012-7
  21. Richardson, J. W.; Blackman, M. J.; Ranochak, J. E. J. Chem. Phys. 1973, 58, 3010. https://doi.org/10.1063/1.1679612
  22. Ren, J.; Liang, W.; Whangbo, M.-H. CAESAR; Primecolor Software, Inc.: Cary, NC, 1999.
  23. Bradley, C. J.; Cracknell, A. P. The Mathematical Theory of Symmetry in Solids. Representation Theory for Point Groups and Space Groups; Clarendon Press: Oxford, 1972.
  24. Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833. https://doi.org/10.1063/1.1740588
  25. Whangbo, M.-H. J. Chem. Phys. 1981, 75, 4983. https://doi.org/10.1063/1.441887
  26. Whangbo, M.-H. J. Chem. Phys. 1980, 73, 3854. https://doi.org/10.1063/1.440571
  27. Whangbo, M.-H. Acc. Chem. Res. 1983, 16, 95. https://doi.org/10.1021/ar00087a004
  28. Longo, J. M.; Raccah, P. M. J. Solid State Chem. 1973, 6, 526. https://doi.org/10.1016/S0022-4596(73)80010-6
  29. Bednorz, J. G.; Muller, K. A. Z. Phys. B Condensed Matter. 1986, 64, 189. https://doi.org/10.1007/BF01303701