DOI QR코드

DOI QR Code

추출조건이 해동피 열수 추출물의 항산화 효과에 미치는 영향

Antioxidant Activity of Water-soluble Extracts from Kalopanacis cortex

  • 양훈석 (부경대학교 식품공학과) ;
  • 이양봉 (부경대학교 식품공학과) ;
  • 유병진 (강릉원주대학교 식품영양학과)
  • Yang, Hoon-Suk (Dept. of Food Science and Technology, Pukyong National University) ;
  • Lee, Yang-Bong (Dept. of Food Science and Technology, Pukyong National University) ;
  • Yoo, Byung-Jin (Dept. of Food and Nutrition, Gangnung-Wonju National University)
  • 투고 : 2012.09.28
  • 심사 : 2013.03.27
  • 발행 : 2013.04.30

초록

해동피 항산화 물질을 추출하기 위한 열수 추출조건을 냉장처리 여부, 추출온도 및 추출시간을 달리하여 검토하였다. 이러한 조건을 달리하여 추출된 추출물의 총 폴리페놀 화합물의 함량, DPPH radical 소거능 및 HRSA를 측정하였다. 그 결과 총 폴리페놀 함량은 냉장처리 후 추출온도 $95^{\circ}C$, 추출 15시간에서 $612{\mu}g/mL$로써 가장 높았다. DPPH radical 소거능은 냉장처리 후 추출온도 $95^{\circ}C$, 추출 15시간에서 가장 높은 78.8%이었고 대조구인 ascorbic acid의 70.2%보다 높게 나타났다. HRSA는 냉장처리 후 추출온도 $95^{\circ}C$, 추출 15시간에서 ascorbic acid 56.6%보다 높은 69.0%로 가장 높게 나타났다. 따라서 이상의 열수추출에 의한 해동피의 항산화성 활성 및 그 최적 조건을 확립한 것으로 향후 해동피의 기능성식품으로서의 이용개발을 위한 중요한 자료로 이용될 수 있음을 보여 주고 있다.

In this study, we established the optimal conditions for obtaining water-soluble extracts with antioxidant activity from Kalopanacis cortex. The extraction conditions tested included cold treatment, extraction time (1, 5, 10, 15, and 24 h), and extraction temperature (55, 75, and $95^{\circ}C$). The highest total polyphenol compound content from water soluble extracts ($612{\mu}g/mL$) was obtained at $95^{\circ}C$ for 15 h after cold treatment. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenger activity was also highest (78.8%) under these conditions, which was comparable to 70.2% of ascorbic acid. The hydroxyl radical scavenging activity (HRSA) was also highest (69.0%) under these conditions, stronger than 56.6% of ascorbic acid. These results may provide critical evidence supporting the use of Kalopanacis cortex as a source of antioxidants in functional foods.

키워드

참고문헌

  1. Mavelli I, Ciriolo MR, Rotilio G, De Sole P, Castorino M, Stabile A. 1982. Superoxide dismutase, glutathion peroxidase and catalase in oxidative hemolysis. A study of Fanconi's anemia erythrocytes. Biochem Biophys Res Commun 106: 286-290. https://doi.org/10.1016/0006-291X(82)91107-X
  2. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  3. Sen CK. 1995. Oxidants and antioxidants in exercise. Appl Physiol 79: 675-692. https://doi.org/10.1152/jappl.1995.79.3.675
  4. Videla LA, Fernández V. 1998. Biochemical aspects of cellular oxidative stress. Arch Biol Med Exp (Santiago) 21:85-92.
  5. Halliwell B, Aruoma OI. 1991. DNA damage by oxygenderived species. Its mechanism and measurement in mammalian systems. FEBS Lett 281: 9-19. https://doi.org/10.1016/0014-5793(91)80347-6
  6. Branen AL. 1991. Toxicological and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J Am Oil Chem Soc 52: 59-63.
  7. Chan KM, De Cker EA, Means WJ. 1993. Extraction and activity of carnosine, a naturally occurring antioxidant in beef muscle. J Food Sci 58: 1-4. https://doi.org/10.1111/j.1365-2621.1993.tb03199.x
  8. Larson RA. 1988. The antioxidants of higher plants. Phytochemistry 27: 969-978. https://doi.org/10.1016/0031-9422(88)80254-1
  9. Kim DW, Bang KH, Rhee YH, Lee KT, Park HJ. 1998. Growth inhibitory activities of kalopanaxsaponins A and I against human pathogenic fungi. Arch Pharm Res 21: 688-691. https://doi.org/10.1007/BF02976758
  10. Kim DW, Yu KW, Bae EA, Park HJ, Choi JW. 1998. Metabolism of kalopanaxsaponin B and H by human intestinal bacteria and antidiabetic activity of their metabolites. Biol Pharm Bull 21: 360-365. https://doi.org/10.1248/bpb.21.360
  11. Park HJ, Kim DH, Choi JW, Park HJ, Han YN. 1998. A potent anti-diabetic agent from Kalopanax pictus. Arch Pharm Res 21: 24-29. https://doi.org/10.1007/BF03216748
  12. Choi J, Huh K, Kim SH, Lee KT, Lee HK, Park HJ, Han YN. 2002. Antinociceptive and anti-rheumatoidal effects of Kalopanax pictus extract and its saponin components in experimental animals. J Ethnopharmacol 79: 199-204. https://doi.org/10.1016/S0378-8741(01)00383-X
  13. Sano K, Sanada S, Ida Y, Shoji J. 1991. Studies on the constituents of the bark of Kalopanax pictus Nakai. Chem Pharm Bull 39: 865-870. https://doi.org/10.1248/cpb.39.865
  14. Sun WJ, Zhang DK, Sha ZF, Zhang HL, Zhang XL. 1990. Studies on the saponin constituents of Kalopanax septemlobus (Thunb.) koidz. Yao Xue Xue Bao 25: 29-34.
  15. Shao CJ, Nakai R, Ohtani K, Xu JD, Tanaka O. 1989. Saponins from leaves of Kalopanax septemlobus (Thunb.) Koidz.: Structures of Kalopanax-saponins La, Lb and Lc. Chem Pharm Bull 37: 3251-3254. https://doi.org/10.1248/cpb.37.3251
  16. Cho SH, Hahn DR. 1991. Triterpenoidal saponins from the bark of Kalopanax pictum var. typicum. Arch Pharm Res 14: 19-24. https://doi.org/10.1007/BF02857808
  17. Jeong YJ, Noh JE, Park NY. 2004. Studies on the storage of Kalopanax pictus extract. Korean J Food Preserv 11:299-303.
  18. Kim YJ. 2011. Effects of ditetary supplementation of castor aralia (Kalopanax pictus Nakai) on physico-chemical properties and quality of chicken thigh meat. Korean J Poult Sci 38: 105-112. https://doi.org/10.5536/KJPS.2011.38.2.105
  19. AOAC. 2005. Official method of analysis. 18th ed. Association of Official Analytical Chemists, Washington, DC, USA. Method 965.31.
  20. Kawagan S. 1996. Protocol for control of body functional material in food. Kakuen press center, Tokyo, Japan. p 8-15.
  21. Choi GN, Jeong CH, Kim JH, Kwak JH, Shin YH, Lee CH, Cho SH, Choi SG, Heo HJ. 2009. Effect of storage temperature and water activity on antioxidant activities of powdered green tea extracts. Korean J Food Preserv 16: 333-341.
  22. Ciou JY, Lin HH, Chiang PY, Wang CC, Charles AL. 2011. The role of polyphenol oxidase and peroxidase in the browning of water caltrop pericarp during heat treatment. Food Chem 127: 523-527. https://doi.org/10.1016/j.foodchem.2011.01.034
  23. Spigno G, Tramelli L, De Faveri DM. 2007. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J Food Engineering 81: 200-208. https://doi.org/10.1016/j.jfoodeng.2006.10.021
  24. Zuniga Hansen ME, Laroze L. 2009. Temperature effect on phenolic antioxidant extraction from raspberry wastes assisted by enzymes. New Biotechnol 25: S170.
  25. Turkmen N, Sari F, Velioglu YS. 2005. The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chem 93: 713-718. https://doi.org/10.1016/j.foodchem.2004.12.038
  26. Choi Y, Lee SM, Chun J, Lee HB, Lee J. 2006. Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chem 99: 381-387. https://doi.org/10.1016/j.foodchem.2005.08.004
  27. Kim SY, Jeong SM, Park WP, Nam KC, Ahn DU, Lee SC. 2006. Effect of heating conditions of grape seeds on the antioxidant activity of grape seed extracts. Food Chem 97:472-479. https://doi.org/10.1016/j.foodchem.2005.05.027
  28. Kim HY, Woo KS, Hwang IG, Lee YR, Jeong HS. 2008. Effects of heat treatments on the antioxidant activities of fruits and vegetables. Korean J Food Sci Technol 40:166-170.
  29. Kim JW, Minamikawa T. 1997. Hydroxyl radical-scavenging effects of spices and scavengers from brown mustard (Brassica nigra). Biosci Biotech Biochem 61: 118-123. https://doi.org/10.1271/bbb.61.118

피인용 문헌

  1. Quality Properties of Yogurt Added with Hot Water Concentrates from Allium hookeri Root vol.43, pp.9, 2014, https://doi.org/10.3746/jkfn.2014.43.9.1415
  2. 추출온도에 따른 이팝나무 과육 물 추출물의 항산화 및 항노화 활성 vol.24, pp.8, 2017, https://doi.org/10.11002/kjfp.2017.24.8.1129
  3. Correlation between Antioxidant Compounds and Activities of ‘Hibiscus sabdariffa’ Teas from Different Origins vol.28, pp.1, 2018, https://doi.org/10.17495/easdl.2018.2.28.1.40
  4. 치주염 원인균에 대한 천연 식물 추출물의 항균효과 vol.19, pp.1, 2013, https://doi.org/10.5392/jkca.2019.19.01.242