DOI QR코드

DOI QR Code

Effect of Sterilization by Intense Pulsed Light on Radiation-resistant Bacterium, Micrococcus roseus

방사선 저항세균 Micrococcus roseus의 광펄스 살균 효과

  • Received : 2012.12.27
  • Accepted : 2013.01.24
  • Published : 2013.04.30

Abstract

The purpose of this study was to investigate the inactivation effect of intense pulsed light (IPL) on Micrococcus roseus, an irradiation-resistant bacterium isolated from laver, and the commercial feasibility of this sterilization method on dried laver. The inactivation of M. roseus in cultivated plates increased with increasing light intensity and treatment time. Approximately 6.6 log CFU/mL reduction of the cell viability was achieved with IPL treatment for 3 min at 1,000 V of light intensity, tailing was not shown. In addition, the inactivation rate of M. roseus increased with increasing pulse number at same light intensity and treatment time. The killing efficiency for M. roseus increased with by decreasing the distance between the light source and the sample surface.

김에 존재하는 M. roseus는 비병원성 세균이나 사람이 면역력이 떨어지게되면 질병을 일으킬 수 있는 균주로서 열처리를 통해서도 쉽게 사멸되지 않고 특히 10 kGy의 감마선 조사에서도 1 log, 40 kGy의 조사선량에서 1 log CFU/mL 이상의 생존율을 나타내는 방사선 저항 세균이다. 이러한 방사선 저항 세균인 M. roseus를 광펄스 살균을 통해 살균 가능성을 알아보았다. M. roseus는 빛의 세기가 증가함에 따라 사멸율이 증가하는 경향을 나타냈으며, 1,000 V의 빛의 세기에서 3분 처리 후에 6.4 log의 감소효과를 보였고 tailing 현상을 보이지 않았다. 빛의 세기와 처리시간을 같이 한 조건에서는 단위 시간동안 펄스 수가 높을수록 살균율이 높아졌으며, 10 pps에서는 2분의 처리로 모든 균이 사멸하였다. 또한 광원과 시료사이의 거리는 가까울수록 사멸율이 증가하는 경향을 보였다. 이러한 연구 결과로 볼 때 광펄스 살균이 향후 김의 위생적 처리의 방법의 하나로 가능성이 있을 것으로 예측된다.

Keywords

References

  1. Shin JK, Kim BR, Kim AJ. Nonthermal food processing technology using electric power. Food Sci. Ind. 43: 21-34 (2010)
  2. Hiramoto T. Method of sterilization, US Patent 4,464,336 (1984)
  3. Dunn JE, Clark RW. Asmus JF, Pearlman JS, Boyerr K, Painchaud F. Methods for preservation of foodstuffs. US Patent 4,871,559 (1989)
  4. Bolton JR, Linden KG. Sterilization of methods for fluence (UV dose) determination in bench-scale UV experiments. J. Environ. Eng. 129: 209-215 (2003) https://doi.org/10.1061/(ASCE)0733-9372(2003)129:3(209)
  5. Slieman TA, Nicholson WL. Artificial and solar UV radiation induces strand breaks and cyclobutane dimer in Bacillus subtilis spore DNA. Appl. Eniron. Microbiol. 62: 1977-1983 (2000)
  6. Park SY, Choi JW, Yeon J, Lee MJ, Oh DH, Hong CH, Bahk GJ, Woo GJ, Park JS, Ha DS. Assessment of contamination level of foodborne pathogens in the main ingredients of Kimbab during the preparing process. Korean J. Food Sci. Technol. 37: 122-128 (2005)
  7. Lee NY, Jo CU, Chung HJ, Kang HJ, Kim JK, Kim HJ, Byun MW. The prediction of the origin of microbial contamination in Kimbab and improvement of microbiological safety by gamma irradiation. Korean J. Food Sci. Technol. 37: 279-286 (2005)
  8. Kim DH, Song HP, Kim JK, Kim JO, Lee HJ, Byun MW. Determination of microbial contamination in the process of rice rolled in dried laver and improvement of shelf-life by gamma irradiation. J. Korean Soc. Food Sci. Nutr. 32: 991-996 (2003) https://doi.org/10.3746/jkfn.2003.32.7.991
  9. Kang SG, Park SH, Ki HJ, Ham KS. Chitosan treatment during the preparation of dried laver affects microbial growth and quality. J. Chitin Chitosan 6: 150-154 (2001)
  10. Lee HJ, Byun HS, Kim JH, Park HY, Jung KJ, Lee TS. Bacterial contamination of dried laver products. Bull. Nat. Fish. Res. Devel. Ins. 57: 221-226 (1999)
  11. Ahn HJ, Yook HS, Kim DH, Kim S. Byun MW. Identification of radiation-resistant bacterium isolated from dried laver(Porphyra tenera). J. Korean Soc. Food Sci. Nutr. 30: 193-195 (2001)
  12. Cho HY, Shin JK, Song YA, Yoon SJ, Kim JM, Pyun YR. Nonthermal pasteurization of lactic acid bacteria by high intensity light pulse. Korean J. Food Sci. Technol. 34: 631-636 (2002)
  13. Yaun BR, Summer SS, Eifert JD, Marcy JE. Response of Salmonella and Escherichia coli O157:H7 to UV energy. J. Food Prot. 66: 1071-1073 (2003)
  14. Krishnamurthy K, Demirci, A, Irudayaraj J. Inactivation of Staphylococcus aureus by pulsed UV-light sterilization. J. Food Prot. 67: 1027-1030 (2004)
  15. Otaki M, Okuda A, Tajiman K, Iwasaki T, Kinoshita S, Ohgaki S.Inactivation differences of microoragnisms by low pressure UV and pulsed xenon lamps. Water Sci. Tech. 47: 185-190 (2003)
  16. Wang T, MacGregor SJ, Anderson JG, Woolsey GA. Pulsed ultraviolet inactivation spectrum of Escherichia coli. Water Res. 39: 2921-2925 (2005) https://doi.org/10.1016/j.watres.2005.04.067
  17. Jonathan MM, Rose MRM, Olag MB. Influence of treatment time and pulsed frequency on Salmonella enteridis, Escherichia coli and Listeria monocytogenes populations inoculated in melon and watermelon juices treated by pulsed electric field, Intl. J. Food Microbiol. 117: 192-200 (2007) https://doi.org/10.1016/j.ijfoodmicro.2007.04.009
  18. Jeyamkondan S, Jayas DS, Holley RA. Kinetics of sterilization of Lactobacillus brevis cells by the application of high voltage pulses. Biotech. Bioeng. 40: 1412-1420 (1999)
  19. Korolczuk J, Mckeag JR. Fernandez JC. Baron F, Grosset N, Jeantet R. Effect of pulsed electric filed processing parameters on Salmonella enteritidis inactivation. J. Food Eng. 75: 11-20 (2006) https://doi.org/10.1016/j.jfoodeng.2005.03.027
  20. Gomez-Lopez VM, Devlieghere F, Bonduelle V, Debevere J. Factors affecting the inactivation of microorganisms by intense light pulses. J. App. Microbiol. 99: 460-470 (2005) https://doi.org/10.1111/j.1365-2672.2005.02641.x

Cited by

  1. Identification of electron beam-resistant bacteria in the microbialreduction of dried laver (Porphyra tenera) subjected to electron beam treatment vol.23, pp.1, 2016, https://doi.org/10.11002/kjfp.2016.23.1.139
  2. Sterilization of Rapeseed Sprouts by Intense Pulsed Light Treatment vol.48, pp.1, 2016, https://doi.org/10.9721/KJFST.2016.48.1.36
  3. Nonthermal Sterilization of Pathogenic Escherichia coli by Intense Pulsed Light Using a Batch System vol.47, pp.1, 2015, https://doi.org/10.9721/KJFST.2015.47.1.81