DOI QR코드

DOI QR Code

Improvement of Inverted Hybrid Organic Light-emitting Diodes Properties with Bar-coating Process

바코팅 공정을 이용한 유기 발광 다이오드 특성 향상

  • Kwak, Sun-Woo (Department of Printed Electronics, Korea Institute of Machinery and Materials) ;
  • Yu, Jong-Su (Department of Printed Electronics, Korea Institute of Machinery and Materials) ;
  • Han, Hyun-Suk (Department of Printed Electronics, Korea Institute of Machinery and Materials) ;
  • Kim, Jung-Su (Research & Development Team, Printed Electronics Mechanical System) ;
  • Lee, Taik-Min (Department of Printed Electronics, Korea Institute of Machinery and Materials) ;
  • Kim, Inyoung (Department of Printed Electronics, Korea Institute of Machinery and Materials)
  • Received : 2013.04.08
  • Accepted : 2013.05.23
  • Published : 2013.06.01

Abstract

Solution processed conjugated molecules enable to manufacture various electronic devices by unconventional and cost effective patterning methods as screen or gravure printing. Spin-coating is the most popularly used method to form conjugated polymeric film for various electronic devices. The coating method has certain disadvantages such as a large amount of unwanted wastes, difficulty forming a film with a large area, and impossible to apply roll-to-roll manufacturing. We present here a promising alternative coating method, bar-coating for conjugated polymer film and OLED with the bar coated light emitting layer. In this papers, we show atomic force microscope images of spin- and bar-coated Poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,8-diyl)] (F8BT) films on substrate. The bar-coated film showed a slight lower RMS roughness (1.058 [nm]) than spin-coated film (1.767 [nm]). It means the bar-coating is suitable method to form light emitting layers in OLEDs. By using bar-coating process, an OLED obtained with 4.7 [cd/A] in maximum current efficiency.

Keywords

References

  1. Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Bredas, J. L., Logdlund, M., and Salaneck, W. R., "Electroluminescence in conjugated Polymers," Nature, Vol. 397, No. 14, pp. 121-128, 1999. https://doi.org/10.1038/16393
  2. Greenham, N. C., Moratti, S. C., Bradley, D. D. C., Friend, R. H., and Holmes, A. B., "Efficient lightemitting diodes based on polymers with high electron affinities," Nature, Vol. 365, No. 14, pp. 628-630, 1993. https://doi.org/10.1038/365628a0
  3. Ho, Peter K. H., Kim, J. S., Burroughes, J. H., Becker, H., Li, S. F. Y., Brown, T. M., Cacialli, F., and Friend, R. H., "Molecular-scale interface engineering for polymer light-emitting diodes," Nature, Vol. 404, No. 30, pp. 481-484, 2000. https://doi.org/10.1038/35006610
  4. Gustafsson, G., Cao, Y., Treacy, G. M., Klavetter, F., Colaneri, N., and Heeger, A. J., "Flexible lightemitting diodes made from soluble conducting polymers," Nature, Vol. 357, No. 11, pp. 477-479, 1992. https://doi.org/10.1038/357477a0
  5. Tokmoldin, N., Griffiths, N., Bradley, D. D. C., and Haque, S. A., "A Hybrid Inorganic-Organic Semiconductor Light-Emitting Diode Using ZrO2 as an Electron-Injection Layer," Adv. Mater., Vol. 21, No. 34, pp. 3475-3478, 2009. https://doi.org/10.1002/adma.200802594
  6. Bolink, H. J., Coronado, E., Orozco, J., and Sessolo, M., "Efficient Polymer Light-Emitting Diode Using Air-Stable Metal Oxides as Electrodes," Adv. Mater., Vol. 21, No. 1, pp. 79-82, 2009. https://doi.org/10.1002/adma.200802155
  7. Kabra, D., Song, M. H., Wenger, B., Friend, R. H., and Snaith, H. J., "High Efficiency Composite Metal Oxide-Polymer Electroluminescent Devices: A Morphological and Material Based Investigation," Adv. Mater., Vol. 20, No. 18, pp. 3447-3452, 2008. https://doi.org/10.1002/adma.200800202
  8. Aziz, H., Popovic, Z., Tripp, C. P., Hu, N. X., Hor, A. M., and Xu, G., "Degradation processes at the cathode/organic interface in organic light emitting devices with Mg:Ag cathodes," Appl. Phys. Lett., Vol. 72, No. 21, pp. 2642-2644, 1998. https://doi.org/10.1063/1.121442
  9. Liew, Y. F., Aziz, H., Hu, N. X., Chan, H. S. O., and Popovic, Z., "Investigation of the sites of dark spots in organic light-emitting devices," Appl. Phys. Lett., Vol. 77, No. 17, pp. 2650-2652, 2000. https://doi.org/10.1063/1.1320459
  10. Kim, J. Y., Lee, K. H., Coates, N. E., Moses, D., Nguyen, T. Q., Dante, M., and Heeger, A. J., "Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing," Science, Vol. 317, No. 13, pp. 222-225, 2007. https://doi.org/10.1126/science.1141711
  11. Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burn, P. L., and Holmes, A. B., "Light-emitting diodes based on conjugated polymers," Nature, Vol. 347, No. 11, pp. 539-541, 1990. https://doi.org/10.1038/347539a0
  12. Pardo, D. A., Jabbour, G. E., and Peyghambarian, N., "Application of Screen Printing in the Fabrication of Organic Light-Emitting Devices," Adv. Mater., Vol. 12, No. 17, pp. 1249-1252, 2000. https://doi.org/10.1002/1521-4095(200009)12:17<1249::AID-ADMA1249>3.0.CO;2-Y
  13. Birnstock, J., Blassing, J., Hunze, A., Scheffel, M., Stossel, M., Heuser, K., Wittmann, G., Worle, J., and Winnacker, A., "Screen-printed passive matrix displays based on light-emitting polymers," Appl. Phys. Lett., Vol. 78, No. 24, pp. 3905-3907, 2001. https://doi.org/10.1063/1.1379594
  14. Liu, J., Shi, Y., Ma, L., and Yang, Y., "Device performance and polymer morphology in polymer light emitting diodes: The control of device electrical properties and metal/polymer contact," J. Appl. Phys., Vol. 88, No. 2, pp. 605-609, 2000. https://doi.org/10.1063/1.373799
  15. Nguyen, T. Q., Martini, I. B., Liu, J., and Schwartz, B. J., "Controlling Interchain Interactions in Conjugated Polymers:The Effects of Chain Morphology on Exciton−Exciton Annihilation and Aggregation in MEH−PPV Films," J. Phys. Chem. B, Vol. 104, No. 2, pp. 237-255, 2000. https://doi.org/10.1021/jp993190c
  16. Ouyang, J., Guo, T. F., Yang, Y., Higuchi, H., Yoshioka, M., and Nagatsuka, T., "High-performance, Flexible Polymer Light-Emitting diodes Fabricated by continuous polymer coating process," Adv. Mater., Vol. 14, No. 12, pp. 915-918, 2002. https://doi.org/10.1002/1521-4095(20020618)14:12<915::AID-ADMA915>3.0.CO;2-9
  17. Liang, Z., Zhang, Q., Wiranwetchayan, O., Xi, J., Yang, Z., Park, K., Li, C., and Cao, G., "Effects of the Morphology of a ZnO Buffer Layer on the Photovoltaic Performance of Inverted Polymer Solar Cells," Adv. Funct. Mater., Vol. 22, No. 10, pp. 2194- 2201, 2012. https://doi.org/10.1002/adfm.201101915
  18. Huang, J., Xu, Z., and Yang, Y., "Low-Work-Function Surface Formed by Solution-Processed and Thermally Deposited Nanoscale Layers of Cesium Carbonate," Adv. Funct. Mater., Vol. 17, No. 12, pp. 1966-1973, 2007. https://doi.org/10.1002/adfm.200700051
  19. Lilliedal, M. R., "Roll-to-Roll Processing of Polymer Solar Cells," M.sc. Thesis, Solar Energy Programme, Riso DTU, 2010.
  20. Park, J. S., Lee, B. R., Lee, J. M., Kim, J. S., and Kim, S. O., "Efficient hybrid organic-inorganic light emitting diodes with self-assembled dipole molecule deposited metal oxides," Appl. Phys. Lett., Vol. 96, No. 24, pp. 243306, 2010. https://doi.org/10.1063/1.3453759

Cited by

  1. A development and evaluation of micro-gravure coater for printed electronics vol.53, pp.5S3, 2014, https://doi.org/10.7567/JJAP.53.05HC12