DOI QR코드

DOI QR Code

Effects of Micro-Electrical Stimulation on Regulation of Behavior of Electro-Active Stem Cells

  • Im, Ae-Lee (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University) ;
  • Kim, Jangho (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University) ;
  • Lim, KiTaek (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University) ;
  • Seonwoo, Hoon (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University) ;
  • Cho, Woojae (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University) ;
  • Choung, Pill-Hoon (Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Chung, Jong Hoon (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University)
  • Received : 2013.04.11
  • Accepted : 2013.05.24
  • Published : 2013.06.01

Abstract

Purpose: Stem cells provide new opportunities in the regenerative medicine for human or animal tissue regeneration. In this study, we report an efficient method for the modulating behaviors of electro-active stem cells by micro-electric current stimulation (mES) without using chemical agents, such as serum or induction chemicals. Methods: Dental pulp stem cells (DPSCs) were cultured on the tissue culture dish in the mES system. To find a suitable mES condition to promote the DPSC functions, the response surface analysis was used. Results: We found that a working micro-current of 38 ${\mu}A$ showed higher DPSC proliferation compared with other working conditions. The mES altered the expressions of intracellular and extracellular proteins compared to those in unstimulated cells. The mES with 38 ${\mu}A$ significantly increased osteogenesis of DPSCs compared with ones without mES. Conclusions: Our findings indicate that mES may induce DPSC proliferation and differentiation, resulting in applying to DPSCs-based human or animal tissue regeneration.

Keywords

References

  1. Aaron, R. K., D. M. Ciombor, H. Keeping, S. Wang, A. Capuano and C. Polk. 1999. Power frequency fields promote cell differentiation coincident with an increase in transforming growth factor-${\beta}1$ expression. Bioelectromagnetics 20(7):453-458. https://doi.org/10.1002/(SICI)1521-186X(199910)20:7<453::AID-BEM7>3.0.CO;2-H
  2. Aaron, R. K., S. Wang and D. M. Ciombor. 2002. Upregulation of basal $TGF{\beta}1$ levels by EMF coincident with chondrogenesis-implications for skeletal repair and tissue engineering. Journal of orthopaedic research 20(2):233-240. https://doi.org/10.1016/S0736-0266(01)00084-5
  3. Au, H. T. H., B. Cui, Z. E. Chu, T. Veres and M. Radisic. 2009. Cell culture chips for simultaneous application of topographical and electrical cues enhance phenotype of cardiomyocytes. Lab on a Chip 9(4):564-575. https://doi.org/10.1039/b810034a
  4. Baumann, S. B., D. R. Wozny, S. K. Kelly and F. M. Meno. 1997. The electrical conductivity of human cerebrospinal fluid at body temperature. Biomedical Engineering, IEEE Transactions on 44(3):220-223. https://doi.org/10.1109/10.554770
  5. Berg, H. 1995. Possibilities and problems of low frequency weak electromagnetic fields in cell biology. Bioelectrochemistry and bioenergetics 38(1):153-159. https://doi.org/10.1016/0302-4598(95)01831-X
  6. Falanga, V., G. Bourguignon and L. Bourguignon. 1987. Electrical stimulation increases the expression of fibroblast receptors for transforming growth factorbeta. J Invest Dermatol 88(4):4-6.
  7. Gronthos, S., M. Mankani, J. Brahim, P. G. Robey and S. Shi. 2000. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences 97(25):13625-13630.
  8. Haddad, J. B., A. G. Obolensky and P. Shinnick. 2007. The biologic effects and the therapeutic mechanism of action of electric and electromagnetic field stimulation on bone and cartilage: new findings and a review of earlier work. The Journal of Alternative and Complementary Medicine 13(5):485-490. https://doi.org/10.1089/acm.2007.5270
  9. Jo, Y.-Y., H.-J. Lee, S.-Y. Kook, H.-W. Choung, J.-Y. Park, J.-H. Chung, Y.-H. Choung, E.-S. Kim, H.-C. Yang and P.-H. Choung. 2007. Isolation and characterization of postnatal stem cells from human dental tissues. Tissue engineering 13(4):767-773. https://doi.org/10.1089/ten.2006.0192
  10. Kim, D.-H., P. K. Wong, J. Park, A. Levchenko and Y. Sun. 2009. Microengineered platforms for cell mechanobiology. Annual review of biomedical engineering 11:203-233. https://doi.org/10.1146/annurev-bioeng-061008-124915
  11. Kim, I. S., J. K. Song, Y. L. Zhang, T. H. Lee, T. H. Cho, Y. M. Song, D. K. Kim, S. J. Kim and S. J. Hwang. 2006. Biphasic electric current stimulates proliferation and induces VEGF production in osteoblasts. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1763(9):907-916. https://doi.org/10.1016/j.bbamcr.2006.06.007
  12. Kim, J., Y. R. Kim, Y. Kim, K. T. Lim, H. Seonwoo, S. Park, S. P. Cho, B. H. Hong, P. H. Choung , T. D. Chung, Y. H. Choung and J.H. Chung. 2013. Graphene-incorporated chitosan substrata for adhesion and differentiation of human mesenchymal stem cells. Journal of Materials Chemistry B 1(7): 933-938. https://doi.org/10.1039/c2tb00274d
  13. Kim, J. H., C. S. Cho, Y. H. Choung, K.T. Lim, H. M. Son, H. Seonwoo, S. J. Baik, J. Y. Park, P. H. Choung and J. H. Chung. 2009. Mechanical stimulation of mesenchymal stem cells for tissue engineering. Tissue Engineering and Regenerative Medicine 6(1):199-206.
  14. Li, X., T. Xu, X. Ma, K. Guo, L. Kai, Y. Zhao, X. Jia and Y. Ma. 2008. Optimization of culture conditions for production of cis-epoxysuccinic acid hydrolase using response surface methodology. Bioresource technology 99(13): 5391-5396. https://doi.org/10.1016/j.biortech.2007.11.017
  15. Lim, K. T., J. H. Kim, S. Hoon, J. U. Chang, H. C. Choi, J. Hexiu, W. J. Cho, P. H. Choung andJ. H. Chung. 2013. Enhanced osteogenesis of human alveolar bone-derived mesenchymal stem cells for tooth tissue engineering using fluid shear stress in a rocking culture method. Tissue Engineering Part C: Methods 19(2):128-145. https://doi.org/10.1089/ten.tec.2012.0017
  16. Richardson, L. E., J. Dudhia, P. D. Clegg and R. Smith. 2007. Stem cells in veterinary medicine-attempts at regenerating equine tendon after injury. Trends in biotechnology 25(9):409-416. https://doi.org/10.1016/j.tibtech.2007.07.009
  17. Tandon, N., A. Marsano, R. Maidhof, K. Numata, C. Montouri-Sorrentino, C. Cannizzaro, J. Voldman and G. Vunjak-Novakovic. 2010. Surface-patterned electrode bioreactor for electrical stimulation. Lab on a Chip 10(6):692-700. https://doi.org/10.1039/b917743d
  18. Wang, J., H. Ma, X. Jin, J. Hu, X. Liu, L. Ni and P. X. Ma. 2011. The effect of scaffold architecture on odontogenic differentiation of human dental pulp stem cells. Biomaterials 32(31):7822-7830. https://doi.org/10.1016/j.biomaterials.2011.04.034
  19. Zhao, M., A. Dick, J. V. Forrester and C. D. McCaig. 1999. Electric field-directed cell motility involves upregulated expression and asymmetric redistribution of the epidermal growth factor receptors and is enhanced by fibronectin and laminin. Molecular biology of the cell 10(4):1259-1276. https://doi.org/10.1091/mbc.10.4.1259
  20. Zhuang, H., W. Wang, R. M. Seldes, A. D. Tahernia, H. Fan and C. T. Brighton. 1997. Electrical stimulation induces the level of TGF-${\beta}1$ mRNA in osteoblastic cells by a mechanism involving calcium/calmodulin pathway. Biochemical and biophysical research communications 237(2):225-229. https://doi.org/10.1006/bbrc.1997.7118

Cited by

  1. Design, Fabrication, and Application of a Microfluidic Device for Investigating Physical Stress-Induced Behavior in Yeast and Microalgae vol.39, pp.3, 2014, https://doi.org/10.5307/JBE.2014.39.3.244
  2. Clinical Test for Evaluation of Effectiveness of the Micro-current Stimulation in Facial Skin Care vol.37, pp.5, 2016, https://doi.org/10.9718/JBER.2016.37.5.195
  3. Density of nanopatterned surfaces for designing bone tissue engineering scaffolds vol.130, 2014, https://doi.org/10.1016/j.matlet.2014.05.107