DOI QR코드

DOI QR Code

Multiplication of Escherichia coli DH5α::gfp on Strawberry Fruit Surface

딸기과실 표면에서 Eschercia coli DH5α::gfp 증식

  • Yun, Hyejeong (Division of Microbial Safety, National Academy of Agricultural Science, RDA) ;
  • Park, Kyeonghun (Division of Microbial Safety, National Academy of Agricultural Science, RDA) ;
  • Ryu, Kyoung Yul (Division of Microbial Safety, National Academy of Agricultural Science, RDA) ;
  • Yun, Jong-Chul (Division of Microbial Safety, National Academy of Agricultural Science, RDA) ;
  • Kim, Byung Seok (Division of Microbial Safety, National Academy of Agricultural Science, RDA)
  • 윤혜정 (농촌진흥청 국립농업과학원 유해생물과) ;
  • 박경훈 (농촌진흥청 국립농업과학원 유해생물과) ;
  • 류경열 (농촌진흥청 국립농업과학원 유해생물과) ;
  • 윤종철 (농촌진흥청 국립농업과학원 유해생물과) ;
  • 김병석 (농촌진흥청 국립농업과학원 유해생물과)
  • Received : 2012.04.25
  • Accepted : 2012.11.14
  • Published : 2013.04.30

Abstract

To verify the multiplication of microorganisms on the surface of strawberries, the fate of E. coli $DH5{\alpha}::gfp$ at different temperatures, times and strawberry extract concentrations were measured. The population of E. coli $DH5{\alpha}::gfp$ rapidly increased by 7.36~7.78 log CFU/g at $25{\sim}30^{\circ}C$ for 24 hr and slowly increased by 6.49~8.49 log CFU/g at $10{\sim}20^{\circ}C$ for 48 hr. However, E. coli $DH5{\alpha}::gfp$ did not grow at $10{\sim}15^{\circ}C$ on the surface of the strawberries, regardless of the contact times with the bacterial suspension. E. coli $DH5{\alpha}::gfp$ reached 1.52~3.26 log CFU/g at $20^{\circ}C$ as the contact frequency increased from two to six times. The contact frequencies did not significantly differ. In the case of the six-time contact on the surface of the strawberry at 25 and $30^{\circ}C$, the E. coli $DH5{\alpha}::gfp$ increased by 5.17 and 5.01 log CFU/g. The effects of the strawberry extracts on the growth of E. coli $DH5{\alpha}::gfp$ showed that sterilization and non-sterilization do not affect the growth of microorganisms for 96 hr. In the minimal broth, the growth of E. coli $DH5{\alpha}::gfp$ increased by 1 log CFU/g for 96 hr. In less than 50 percent of the strawberry extracts, the growth rate of E. coli $DH5{\alpha}::gfp$ was higher than in the control and increased by 4 and 5 log CFU/g at 50 and 25 percent of strawberry extracts, respectively. Therefore, E. coli $DH5{\alpha}::gfp$ can multiply and survive on the surface of strawberries when it comes into contact with the fruit extract.

본 연구는 딸기에 E. coli $DH5{\alpha}::gfp$ 균주를 인위적으로 접촉시켜 배양 온도(10, 15, 20, 25, $30^{\circ}C$), 시간(24, 47, 72, 96시간) 및 접촉횟수(0, 2, 4, 6회)에 따른 미생물의 증식가능성을 살펴보고, 딸기 추출물 함량에 의해 E. coli $DH5{\alpha}::gfp$의 증식가능 여부를 측정하였다. 저장온도 및 시간에 의한 E. coli $DH5{\alpha}::gfp$의 증식은 25, $30^{\circ}C$에서 24시간 배양 후 7.36~7.78 log CFU/g로 급격히 증가하였으나 $10{\sim}20^{\circ}C$에서는 48시간 후 6.49~8.49 log CFU/g로 서서히 증식하였다. 각각의 온도에서 96시간 배양 후 15, $25^{\circ}C$조건에서 E. coli $DH5{\alpha}::gfp$의 밀도가 가장 높았으며 $10^{\circ}C$에서 가장 낮게 나타났다. 접촉횟수에 의한 E. coli $DH5{\alpha}::gfp$의 증식은 접촉횟수에 상관없이 10, $15^{\circ}C$에서는 E. coli $DH5{\alpha}::gfp$의 성장이 이루어지지 않았으며 $20^{\circ}C$에서는 접촉횟수 증가에 따라 1.52~3.26 log CFU/g 수준으로 증식하였으나 대조군과의 유의적인 차이는 나타나지 않았다. 배양온도가 25, $30^{\circ}C$인 경우 접촉횟수가 6회인 경우 각각 5.17, 5.01 log CFU/g로 유의적으로 높게 나타났다. 딸기 추출액 함량이 미생물의 증식에 미치는 영향을 살펴본 결과 추출액의 멸균여부에 상관없이 유사한 경향을 나타내었다. 대조군으로서 딸기 추출물 0%인 경우 minimal broth에서의 E. coli $DH5{\alpha}::gfp$의 증식은 배양기간 동안 1 log CFU/g 증가하는 수준으로 유지되었다. 추출물 함량이 50% 미만인 경우 대조군에 비해 E. coli $DH5{\alpha}::gfp$의 증식이 유의적으로 높게 나타났으며, 50, 25% 추출액에서 각각 4, 5 log CFU/g 증가하였다.

Keywords

References

  1. Jeong JW, Kim JH, Kwon KH, Park KJ (2006) Disinfection effects of electrolyzed water on strawberry and quality changes storage. Korean J Food Preserv, 13, 316-321
  2. KFDA Food Code (2009). 10-3-1-43. Korea Food and Drug Administration. Seoul, Korea
  3. Kim JS, Bang OK, Chang HC (2004) Examination of microbiological contamination of ready-to-eat vegetable salad. J Food Hyg Safety, 19, 60-65
  4. Choi JW, Park SY, Yeon JH, Lee MJ, Chung DH (2005) Microbial contamination levels of fresh vegetables distribution in markets. J Food Hyg. Safety, 20, 43-47
  5. Marchetti R, Casadei MA, Huerzoni ME (1992) Microbial population dynamics in ready‐to‐use vegetable salads. Ital J Food Sci, 2, 97-108
  6. Brackett RW (1994) Microbiological spoilage and pathogens in minimally processed refrigerated fruits and vegetables in minimally processed refrigerated fruits and vegetables, Wiley, R.C., ed., Chapman & Hall, NY, USA, p. 269-312.
  7. Salunkhe DK, Desai BR (1984) Postharvest biotechnology of fruit. CRC Press, New York, NY, USA. p117-120
  8. Chung SK, Cho SH, Lee DS (1998) Modified atmosphere packaging of fresh strawberries by antimicrobial plastic films. Korean J Food Sci Technol, 30, 1140-1145
  9. Maxie EC, Bommer NF, Mitchell FG (1971) Infeasibility of irradiating fresh fruits and vegetables. Hort Sci, 6, 202-204
  10. Chung SK, Cho SH, Lee DS (1998) Effect of antimicrobial packaging films on the keeping quality of strawberries. Food Eng Prog, 2, 157-161
  11. Garcia JM, Aguilera C, Albi MA (1995) Postharvest heat treatment on spanish strawberry (Fragaria xananassa Cv. Tudla). J Agric Food Chem, 43, 1489-1492 https://doi.org/10.1021/jf00054a014
  12. Gil MI, Holcroft DM, Kader AA (1997) Changes in strawberry anthocyanins and other polyphenols in response to carbon dioxide treatments. J Agric Food Chem, 45, 1662-1667 https://doi.org/10.1021/jf960675e
  13. Ghaouth AE, Arul J, Ompalam R, Oulet M (1993) Chitosan coating effect on storability and quality of fresh strawberries. J Food Sci, 56, 1618-1620
  14. Morris JR, Sistrunk WA, Sims CA, Main GL (1985) Effect of cultivar, postharvest storage, preprocessing dip treatment and style of pack on the processing quality of strawberries. J Am Soc Hor Sci, 110, 172-177
  15. Kampelmacher EH (1990) Food‐borne listeriosis facts and fiction. In "Food‐borne Listeriosis". Proceedings of a symposium, Wesbaden, FRG. Technomic Pub. Co. Inc. Lancaster, Basel
  16. Beuchat LR (1996) Pathogenic microorganism associated with fresh produce. J Food Prot, 59, 204‐216
  17. Asplund K, Nurmi E (1991) The growth of Salmonella in tomatoes. Int Food Microbiol, 13, 177-182 https://doi.org/10.1016/0168-1605(91)90059-X
  18. Beuchat LR, Brackett RE (1991) Behavior of Listeria monocytogenes inoculated into raw tomatoes and processed tomato products. Appl Environ Microbiol, 57, 1367-1371
  19. Oyarzabal OA, Nogueira MC, Gombas DE (2003) Survival of Escherichia coli O157:H7, Listeria monocyutogenes, and Salmonella in juice concentrate. J Food Prot, 66, 1595-1598
  20. Stewart CN (2001) The utility of green fluorescent protein in transgenic plants. Plant Cell Rep, 20, 376-382 https://doi.org/10.1007/s002990100346
  21. Hu W, Cheng CL (1995) Expression of Aequorea green flourescent protein in plant cells. FEBS Lett, 369, 331-334 https://doi.org/10.1016/0014-5793(95)00776-6
  22. Halfill MD, Richards HA, Mabon SA (2001) Expression of GFP and Bt transgenes in Brassica napus and hybridization with Brassica rapa. Theor Appl Genet, 103, 659-667 https://doi.org/10.1007/s001220100613
  23. Cardoza V, Stewart CN (2003) Increased Agrobacterium mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants. Plant Cell Rep, 21, 599-604
  24. Kim YS, Kim MY, Kang TJ, Kwon TH, Jang YS, Yang MS (2005) Expression of the green fluorescent protein (GFP) in tabacco containing low nicotine for the development of edible vaccine. J Plant Biotechnol, 7, 97-103
  25. Galperin M, Patlis L, Ovadia A, Wolf D, Zelcer A, Kenigsbuch D (2003) A melon genotype with superior competence for regeneration and transformation. Plant Breed, 122, 66-69 https://doi.org/10.1046/j.1439-0523.2003.00764.x
  26. Hojberg O, Schnider U, Winteler HV, Sorensen J, Hass D (1999) Oxygen-sensing repoter strain of Psedomonas fluorescens for monitoring the distribution of low-oxygen habits in soil. Appl Environ Microbiol, 65, 4085-4093
  27. Dellaporta SL, Wood J, Hicks JB (1983) A simple and rapid method for plant DNA preparation. Version II. Plant Mol Biol Rep, 1, 19-21 https://doi.org/10.1007/BF02712670
  28. Statistical Analysis Systems Institute (1995), SAS Institute, Inc. Cary, NC, USA.
  29. Rodriguez, O, Castell‐Perez ME and Moreira, RG (2007) Effect of sugar content and storage temperature on the survival and recovery of irradiated Escherichia coli K-12 MG1655. LWT-Food Scitechnol, 40, 690-696 https://doi.org/10.1016/j.lwt.2006.02.023
  30. Cho JI, Ha SD, Kim KS (2004) Inhibitory effects of temperature, pH, and potassium sorbate against natural microflora in strawberry paste during storage. Korean J Food Sci Technol, 36, 355-360
  31. Abadias M, Usall J., Anguera M, Solsona C, Vinas I (2008) Microbiological quality of fresh, minimallyprocessed fruit and vegetables, and sprouts from retail establishments. Int J Food Microbiol, 123, 121-129 https://doi.org/10.1016/j.ijfoodmicro.2007.12.013
  32. Jaquette CB, Beuchat LR (1998) Combined effects of pH, nisin and temperature on growth and survival of psychrotrophic Bacillus cereus. J Food Prot, 61, 563-570
  33. Graham AF, Mason DR, Peck MW (1996) Predictive model of the effect of temperature, pH, and sodium chlorine on growth from spores of non‐proteolytic Clostridium botulinum. Food Microbiol, 31, 69-85 https://doi.org/10.1016/0168-1605(96)00965-8
  34. Yang YJ (1996) Physiological responses of strawberry fruit affected by storage temperature. Industrial Science Research Institute Sangmyung University, Seoul, Korea. p5-13
  35. Flessa S, Lusk DM, Harris LJ (2005) Survival of Listeria monocytogenes of fresh and frozen strawberries. Int J Food Microbiol, 101, 255-262 https://doi.org/10.1016/j.ijfoodmicro.2004.11.010
  36. Yu YM, Youn YN, Hua QJ, Cha GH, Lee YH (2009) Biological harzard analysis of paprikas, strawberries and tomatoes in the markets. J Food Hyg Safety, 24, 174-181
  37. Kukasik J, Bradley ML, Scott TM, Dea M, Koo A, Hsu WY, Bartz JA, Farrah SR (2003) Reduction of poliovirus 1, bacteriophages, Salmonella Montevideo and Escherichia coli O157:H7 on strawberries by physical and disinfectant washes. J Food Prot, 66, 188-193