DOI QR코드

DOI QR Code

Fabrication of Gd1.5Ba2Cu3O7-y Bulk Superconductors from the Powder Synthesized by a Solid-State Reaction Method

고상반응법으로 합성한 분말로부터 Gd1.5Ba2Cu3O7-y 벌크 초전도체의 제조

  • Kim, Yong Ju (Neutron Science Division, Korea Atomic Energy Research Institute) ;
  • Park, Seung Yeon (Neutron Science Division, Korea Atomic Energy Research Institute) ;
  • You, Byung Youn (Neutron Science Division, Korea Atomic Energy Research Institute) ;
  • Park, Soon-Dong (Neutron Science Division, Korea Atomic Energy Research Institute) ;
  • Kim, Chan-Joong (Neutron Science Division, Korea Atomic Energy Research Institute)
  • 김용주 (한국원자력연구원 중성자과학연구부) ;
  • 박승연 (한국원자력연구원 중성자과학연구부) ;
  • 유병윤 (한국원자력연구원 중성자과학연구부) ;
  • 박순동 (한국원자력연구원 중성자과학연구부) ;
  • 김찬중 (한국원자력연구원 중성자과학연구부)
  • Received : 2013.05.03
  • Accepted : 2013.06.05
  • Published : 2013.06.27

Abstract

$GdBa_2Cu_3O_{7-y}$(Gd123) powders were synthesized by the solid-state reaction method using $Gd_2O_3$ (99.9% purity), $BaCO_3$ (99.75%) and CuO (99.9%) powders. The synthesized Gd123 powder and the Gd123 powder with $Gd_2O_3$ addition ($Gd_{1.5}Ba_2Cu_3O_{7-y}$(Gd1.5)) were used as raw powders for the fabrication of Gd123 bulk superconductors. The Gd123 and Gd1.5 bulk superconductors were fabricated by sintering or a top-seeded melt growth (TSMG) process. The superconducting transition temperature ($T_{c,onset}$) of the sintered Gd123 was 93 K and the transition width was as large as 20 K. The $T_{c,onset}$ of the TSMG processed Gd123 was 82 K and the transition width was also as large as 12 K. The critical current density ($J_c$) at 77 K and 0 T of the sintered Gd123 and TSMG processed Gd123 were as low as a few hundreds A/$cm^2$. The addition of 0.25 mole $Gd_2O_3$ and 1 wt.% $CeO_2$ to Gd123 enhanced the $T_c$, $J_c$ and magnetic flux density (H) of the TSMG processed Gd123 sample owing to the formation of the superconducting phase with high flux pinning capability. The $T_c$ of the TSMG processed Gd1.5 was 92 K and the transition width was 1 K. The $J_cs$ at 77 K (0 T and 2 T) were $3.2{\times}10^4\;A/cm^2$ and $2.5{\times}10^4\;A/cm^2$, respectively. The H at 77 K of the TSMG-processed Gd1.5 was 1.96 kG, which is 54% of the applied magnetic field (3.45 kG).

Keywords

References

  1. M. K. Wu, J. R. Ashburn, C. J. Thorng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Q. Wang and C. W. Chu, Phys. Rev. Lett., 58, 908 (1987). https://doi.org/10.1103/PhysRevLett.58.908
  2. K. Matsunaga, M. Tomita, N. Yamachi, K. Iida, J. Yoshioka and M. Murakami, Supercond. Sci. Technol., 15, 842 (2002). https://doi.org/10.1088/0953-2048/15/5/341
  3. K. Nagashima, T. Higuchi, J. Sok, S.I. Yoo, H. Fujimoto and M. Murakami, Cryogenics, 37, 577 (1997). https://doi.org/10.1016/S0011-2275(97)00058-1
  4. H. Hayashi, K. Tsutsumi, N. Saho, N. Nishizima and K. Asano, Physica C, 392-396, 745 (2003). https://doi.org/10.1016/S0921-4534(03)01214-0
  5. M. Murakami, N. Sakai, T. Higuchi and S. I. Yoo, Supercond. Sci. Technol., 9, 1015 (1996). https://doi.org/10.1088/0953-2048/9/12/001
  6. D. A. Cardwell and N. Hari Babu, Physica C, 445-448, 1 (2006). https://doi.org/10.1016/j.physc.2006.03.065
  7. T. Haugan, P. N. Barnes, R. Wheeler, F. Meisenkothen and M. Sumption, Nature, 430, 867 (2004). https://doi.org/10.1038/nature02792
  8. H. Salamati, A. Babaei-Brojeny and M. Safa, Supercond. Sci. Technol., 14, 816 (2001). https://doi.org/10.1088/0953-2048/14/10/302
  9. C. J. Kim, H. G. Lee, I. H. Kuk, I. S. Chang, C. S. Rim, P. S. Han and D. Y. Won, J. Mater. Sci., 25, 2165 (1990). https://doi.org/10.1007/BF01045783
  10. M. W. Shin, A. I. Kingon, T. M. Hare and C. C. Koch, Mater. Lett., 15, 13 (1992). https://doi.org/10.1016/0167-577X(92)90004-4
  11. Y. A. Jee, C. -J. Kim, T. -H. Sung and G. -W. Hong, Supercond. Sci. Technol., 13, 195 (2000). https://doi.org/10.1088/0953-2048/13/2/314
  12. C. -J. Kim, H. -J. Kim, J. -H. Joo, G. -W. Hong, S. -C. Han, Y. -H. Han, T. -H. Sung and S. -J. Kim, Physica C, 336, 233 (2000). https://doi.org/10.1016/S0921-4534(00)00292-6
  13. C. -J. Kim and G. -W. Hong, Supercond. Sci. Technol., 12, R27 (1999). https://doi.org/10.1088/0953-2048/12/3/001
  14. M. Murakami, Mod. Phys. Lett., B, 4, 163 (1990). https://doi.org/10.1142/S0217984990000234
  15. C. -J. Kim, K. -B. Kim, I. -H. Kuk, G. -W. Hong, Y. - S. Lee and H. -S. Park, Supercond. Sci. Technol., 10, 947 (1997). https://doi.org/10.1088/0953-2048/10/12/019
  16. K. Kishio, J. Shimoyama, T. Hasegawa, K. Kitazawa and K. Fueki, Jpn. J. Appl. Phys., 26, L1228 (1987). https://doi.org/10.1143/JJAP.26.L1228
  17. C. P. Bean, Rev. Mod. Phys., 36, 446 (1964).
  18. J. H. Lee, X. Zhang and H. Wang, J. Appl. Phys., 109, 083510 (2011). https://doi.org/10.1063/1.3569625
  19. K. Zhang, B. Dabrowski, C. U. Segre, D. G. Hinks, Ivan K Schuller, J. D. Jorgensen and M. Slaski, J. Phys. C: Solid State Phys., 20, L935 (1987). https://doi.org/10.1088/0022-3719/20/34/001
  20. S. I. Yoo, N. Sakai, H. Taguchi and M. Murakami, Appl. Phys. Lett., 65 633 (1994). https://doi.org/10.1063/1.112254
  21. X. S. Ling, J. I. Budnick and B. W. Veal, Physica C, 282-287, 2191 (1997). https://doi.org/10.1016/S0921-4534(97)01235-5