DOI QR코드

DOI QR Code

Relationship between Thin Film Thickness and Structural Properties of BaTiO3 Thin Films Grown on p-Si Substrates

p-Si 기판에 성장한 BaTiO3 박막의 두께와 구조적 특성과의 관계

  • Min, Ki-Deuk (Department of Materials Science and Engineering, Hanyang University) ;
  • Lee, Jongwon (Department of Materials Engineering, Hanbat National University) ;
  • Kim, Seon-Jin (Department of Materials Science and Engineering, Hanyang University)
  • 민기득 (한양대학교 신소재공학과) ;
  • 이종원 (한밭대학교 신소재공학부) ;
  • 김선진 (한양대학교 신소재공학과)
  • Received : 2013.05.23
  • Accepted : 2013.06.13
  • Published : 2013.06.27

Abstract

In this study, $BaTiO_3$ thin films were grown by RF-magnetron sputtering, and the effects of the thin film thickness on the structural characteristics of $BaTiO_3$ thin films were systematically investigated. Instead of the oxide substrates generally used for the growth of $BaTiO_3$ thin films, p-Si substrates which are widely used in the current semiconductor processing, were used in this study in order to pursue high efficiency in device integration processing. For the crystallization of the grown thin films, annealing was carried out in air, and the annealing temperature was varied from $700^{\circ}C$. The changed thickness was within 200 nm~1200 nm. The XRD results showed that the best crystal quality was obtained for ample thicknesses 700 nm~1200 nm. The SEM analysis revealed that Si/$BaTiO_3$ are good quality interface characteristics within 300 nm when observed thickness. And surface roughness observed of $BaTiO_3$ thin films from AFM measurement are good quality surface characteristics within 300 nm. Depth-profiling analysis through GDS (glow discharge spectrometer) showed that the stoichiometric composition could be maintained. The results obtained in this study clearly revealed $BaTiO_3$ thin films grown on a p-Si substrate such as thin film thickness. The optimum thickness was 300 nm, the thin film was found to have the characteristics of thin film with good electrical properties.

Keywords

References

  1. C-F. Huang and S. Berger, J. Appl. Phys. 93(5), 2855 (2003). https://doi.org/10.1063/1.1540225
  2. Fiona C. M. Woudenberg, Wiebke F. C. Sager, Johan E. ten Elshof and Henk VerweijJ, Thin Solid Films. 471, 134 (2005). https://doi.org/10.1016/j.tsf.2004.05.007
  3. Satoshi Wada, Hiroaki Yasuno, Takuya Hoshina, Song- Min Nam, Hirofumi Kakemoto and Takaaki Tsurumid, Jpn. J. Appl. Phys. 42, 6188 (2003). https://doi.org/10.1143/JJAP.42.6188
  4. G. Gerra, A. K. Tagantesev, N. Setter and K. Parlinski, Phys. Rev. Lett. 96, 107603 (2006). https://doi.org/10.1103/PhysRevLett.96.107603
  5. E. K. Evangelou, N. Konofaos and C. B. Thomas, Phil. Mag. B, 80(3), 395 (2000).
  6. S. Kim, S. Hishita, Y. Kang and S. Baik, J. Appl. Phys. 78, 5064 (1995).
  7. M. Matsuoka, K. Hoshino and K. Ono, J. Appl. Phys. 76, 1768 (1994). https://doi.org/10.1063/1.357694
  8. L. A. Wills, B. W. Wessels, D. S. Richeson and T. J. Marks, Appl. Phys. Lett. 60, 41 (1992). https://doi.org/10.1063/1.107359
  9. Sangsub Kim, J. Mater. Res., 12, 1152, (1997). https://doi.org/10.1557/JMR.1997.0159
  10. P. Pertosa, Phys. Rev. B 17, 2011 (1978). https://doi.org/10.1103/PhysRevB.17.2011
  11. M. Cernea, I. Matei and C. Logofatu, J. Meter. Sci. 36, 5027 (2001). https://doi.org/10.1023/A:1011858319581
  12. King-Ning Tu, Electronic thin film science for electrical engineers and materials scientists (1992).
  13. Judit G. Lisoni, M. Siegert, C. H. Lei, W. Biegel, J. Schubert, W. Zander and Ch. Buchal, Thin Solid Films. 389, 219 (2001). https://doi.org/10.1016/S0040-6090(01)00887-2
  14. E. K. Evangelou, N. Konofaos, X. Alsanoglou, S. Kennon and C. B. Thomas, Mater. Sci. Semi. Pro. 4, 305 (2001). https://doi.org/10.1016/S1369-8001(00)00109-8
  15. E. K. Evangelou, N. Konofauos, Philosophical Magazine B, 80, 395 (2000).
  16. M. R. Craven, W. M. Cranton, S. Toal and H. S. Reehal, Semi. Sci. Techol. 13, 404 (1998). https://doi.org/10.1088/0268-1242/13/4/009