DOI QR코드

DOI QR Code

목형 잎 추출물의 항산화 활성과 멜라닌 생합성에 대한 저해활성

Antioxidative, and Inhibitory Activities on Melanogenesis of Vitex negundo L. Leaf Extract

  • 김아름 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 박수아 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 하지훈 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 박수남 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소)
  • Kim, A Reum (Department of Fine Chemistry and Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Park, Su Ah (Department of Fine Chemistry and Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Ha, Ji Hoon (Department of Fine Chemistry and Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Park, Soo Nam (Department of Fine Chemistry and Cosmetic R&D Center, Seoul National University of Science and Technology)
  • 투고 : 2012.11.14
  • 심사 : 2013.01.15
  • 발행 : 2013.03.28

초록

본 연구에서는 목형 잎 추출물의 항산화 활성, 성분분석 그리고 mushroom tyrosinase 저해활성 측정, ${\alpha}$-MSH로 유도된 세포 내 멜라닌 생합성에 대한 저해활성에 관한 연구를 수행하였다. 목형 잎 추출물의 자유라디칼 (1,1-diphenyl-2-picrylhydrazyl, DPPH) 소거활성 ($FSC_{50}$)은 에틸아세테이트 분획에서 $14.51{\mu}g/ml$, 아글리콘 분획에서 $13.96{\mu}g/ml$로 측정되었다. Luminol-의존성 화학발광법을 이용한 $Fe^{3+}-EDTA/H_2O_2$ 계에서 생성된 활성산소종 (reactive oxygen species, ROS)에 대한 목형 잎 추출물의 총항산화능은 아글리콘 분획에서 $0.22{\mu}g/ml$로, 아글리콘 분획에서 가장 큰 활성을 나타내었다. 목형 잎 추출물에 대하여 rose-bengal로 증감된 $^1O_2$에 의한 적혈구 파괴에 대한 세포보호 효과는 모든 분획에서 농도 의존적($1{\sim}50{\mu}g/ml$)으로 증가하였으며, 특히 아글리콘 분획에서 지용성 항산화제인 (+)-${\alpha}$-tocopherol 보다 우수한 세포보호 활성이 있는 것으로 나타났다. Mushroom tyrosinase의 활성 저해 효과($IC_{50}$)를 측정한 결과 에틸아세테이트 분획($IC_{50}$ = $48.58{\mu}g/ml$)에서 우수한 효과를 나타났고, ${\alpha}$-MSH로 유도된 세포 내 멜라닌 합성 저해 활성을 측정한 결과 에틸아세테이트 분획물의 $50{\mu}g/ml$ 농도에서 41.80% 저해활성을 나타내었다. TLC, HPLC 및 LC/ESIMS를 이용한 성분분석 결과 에틸아세테이트 분획 중에 luteolin, isoorientin이 존재함을 확인하였다. 이상의 결과들로부터 목형 잎 추출물은 활성산소종을 소거하는 항산화제로 이용가능하며, 특히 mushroom tyrosinase 저해효과와 ${\alpha}$-MSH로 유도된 멜라닌 생합성 저해 효과로부터 에틸아세테이트 분획 중 luteolin 및 isoorientin을 새로운 미백 화장품의 원료로써 이용가능성을 알 수 있었다.

The aim of this study was to evaluate various aspects of Vitex negundo L. leaf extract, such as the antioxidative activity, tyrosinase inhibitory effects, and inhibitory activities on ${\alpha}$-MSH induced melanogenesis, and active component analysis. The DPPH (1, 1-diphenyl-2-picrylhydrazyl) scavenging activities ($FSC_{50}$) of the ethyl acetate fraction and aglycone fraction of V. negundo L. leaf extract were $14.51{\mu}g/ml$ and $13.96{\mu}g/ml$, respectively. A luminol-dependent chemiluminescence assay revealed that the reactive oxygen species (ROS) scavenging activity ($OSC_{50}$) of the aglycone fraction of V. negundo L. leaf extract on ROS generated in an $Fe^{3+}$-$EDTA/H_2O_2$ system was the most prominent at $0.22{\mu}g/ml$. The protective effects of the extracts fractions of V. negundo L. leaf against the rose-bengal sensitized photohemolysis of human erythrocytes were increased in a concentration dependent manner ($1{\sim}50{\mu}g/ml$). In particular, there were greater protective effects of the aglycone fraction on the cellular membrane than that of the fat-soluble antioxidant (+)-${\alpha}$-tocopherol. The inhibitory effects ($IC_{50}$) on mushroom tyrosinase were the highest for the ethyl acetate fraction ($IC_{50}$ = $48.58{\mu}g/ml$). The inhibitory effect on ${\alpha}$-MSH induced melanogenesis in B16 melanoma cells was 41.80% at $50{\mu}g/ml$ of ethyl acetate fraction. Active component analyses by TLC, HPLC and LC/ESI-MS revealed luteolin and isoorientin. These results indicate that V. negundo L. leaf extract can be used as an antioxidant for ROS scavenging. Particularly, the luteolin and isoorientin of the ethyl acetate fraction may be applicable to new whitening cosmetics because of its inhibitory effect on mushroom tyrosinase and ${\alpha}$-MSH induced melanogenesis in B16 melanoma cells.

키워드

참고문헌

  1. Ahn, Y. J., B. R. Won, M. K. Kang, J. H. Kim, and S. N. Park. 2009. Antioxidant activity and component analysis of fermented Lavendula angustifolia extract. J. Soc. Cosmet. Scientists Korea 35: 125-134.
  2. Ando, H., Y. Niki, M. Ito, K. Akiyama, M. S. Matsui, D. B. Yarosh, and M. Ichihashi. 2012. Melanosomes are transferred from melanocyte to keratinocytes through the processes of packaging, release, uptake, and dispersion. J. Invest. Dermatol. 132: 1222-1229. https://doi.org/10.1038/jid.2011.413
  3. Aruoma, O. I., B. Halliwell, E. Gajewski, and M. Dizdaroglu. 1989. Damage to the bases in DNA induced by hydrogen peroxide and ferric ion chelates. J. Biol. Chem, 264: 20509- 20512.
  4. Choi, B. W., B. H. Lee, K. J. Kang, E. S. Lee, and N. H. Lee. 1998. Screening of the tyrosinase inhibitorys from marine algae and medicinal plants. Korean J. Pharmacogn. 29: 237-242.
  5. Choi, M. Y., H. S. Song, H. S. Hur, and S. S. Sim. 2008. Whitening activity of luteolin related to the inhibition of cAMP path way in $\alpha$-MSH-stimulated B16 melanoma cells. Arch. Pharm. Res. 31: 1166-1171. https://doi.org/10.1007/s12272-001-1284-4
  6. Ciapetti, G., E. Cenni, L. Pratelli, A. Pizzoferrato. 1993. In vitro evaluation of cell/biomaterial interaction by MTT assay. Biomaterials, 14: 359-364. https://doi.org/10.1016/0142-9612(93)90055-7
  7. Es-Safi, N. E., L. Kerhoas, J. Einhorn, and P. H. Ducrot. 2005, Application of ESI/MS, CID/MS and tandem MS/MS to the fragmentation study of eriodictyol 7-O-glucosyl-(1→2)-glucoside and luteolin 7-O-glucosyl-(1→2)-glucoside. Int. J. Mass Spec. 247: 93-100. https://doi.org/10.1016/j.ijms.2005.10.002
  8. Foote, C. S. 1976. Photosensitizes oxidation and singlet oxygen: consquences in biological system, Free radicals in biology, Academic Press, New York, Vol. 2, pp. 85-133.
  9. Foote, C. S. 1991. Definition of type and type photosensitized oxidation. Photochem. Photobiol. 54: 659-662. https://doi.org/10.1111/j.1751-1097.1991.tb02071.x
  10. Hill, H. Z., W. Li, P. Xin, and D. L. Mitchell. 1997. Melanin : a two edged sword?. Pigment. Cell. Res. 10: 158-161. https://doi.org/10.1111/j.1600-0749.1997.tb00478.x
  11. Hosoi, J., E. Abe, T. Suda, and T. Kuroki. 1985. Regulation of melanin synthesis of B16 mouse melanoma cell by 1$\alpha$,25- dihydroxyvitamin D3 and retinoic acid. Cancer Res. 45: 1474- 1478.
  12. Ito, S. and K. Wakamatsu. 2003. Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. Pig. Cell Res. 16: 523-531. https://doi.org/10.1034/j.1600-0749.2003.00072.x
  13. Kahl, R. and H. Kappus. 1993. Toxicology of the synthetic antioxidants BHA and BHT in comparison with the natural antioxidant vitamin E, Z. Lebensm. Unters. Forsch 196: 329-338. https://doi.org/10.1007/BF01197931
  14. Kim, K. H., K. S. Kim, J. G. Kim, C. S. Han, Y. H. Kim, and S. N. Park. 2004. Synthesis of novel kojic acid perivative and its anti-pigmentation effect. J. Soc. Cos. Sci. Kor. 30: 409-414.
  15. Kochanek, K. S., P. Brenneisen, and J. Wenk. 2000. Photoaging of the skin from phenotype to mechanisms. Exp. Gerontol. 35: 307-316. https://doi.org/10.1016/S0531-5565(00)00098-X
  16. Kochanek, K. S. 1996. Photoaging of the connective tissue of skin: Its prevention and therapy, In: Antioxidant in disease mechanisms and therapy. Adv. Pharmacol. 38: 639-655. https://doi.org/10.1016/S1054-3589(08)61003-0
  17. Kyrtopoulos, S. 1989. A, N-nitroso compoud formation in human gastric juice. Cancer Surv. 8: 423-442.
  18. Ling, T. J., W. W. Ling, Y. J. Chen, X. C. Wan, T. Xia, X. F. Du, and Z. Z. Zhang. 2010. Antiseptic activity and phenolic constituents of the aerial parts of Vitex negundo var. cannabifolia. Molecules. 15: 8469-8477. https://doi.org/10.3390/molecules15118469
  19. Magdalena, L. C. and Y. A. Tak. 2010. Reactive oxygen species, cellular redox system, and apoptosis. Free Radic. Biol. Med. 48: 749-762. https://doi.org/10.1016/j.freeradbiomed.2009.12.022
  20. Marmol, V. and F. Veermann. 1996. Tyrosinase and related proteins in memmalian pigmentation. FEBS Letters 381: 165-168. https://doi.org/10.1016/0014-5793(96)00109-3
  21. Matsusukami, M. 1995. Evaluation of antimelanogenic effect. Frangrance 19: 14-19.
  22. Muramatsu, H., K. Kogawa, M. Tanaka, K. Okumura, K. Koike, T. Kuga, and Y. Niitsu. 1995. Superoxide dismutase in SAS human tongue carcinoma cell line is a factor defining invasiveness and cell motility. Cancer Res. 55: 6210-6214.
  23. Park, I. H., S. K. Chung, K. B. Lee, Y. C. Yoo, S. K. Kim, G. S. Kim, and K. S. Song. 2004. An antioxidant hispidin from the mycelial cultures of Phellinus linteus. Arch. Pharm. Res. 27: 615-618. https://doi.org/10.1007/BF02980159
  24. Park, S. N. 1989. Dissertation, Seoul National Univ., Seoul, Korea.
  25. Park, S. N. 1997. Skin aging and antioxidant. J. Soc. Cosmet. Sci. Kor. 23: 75-132.
  26. Park, S. N. 2003. Antioxidant properties of baicalein, component from Scutellaria Baicalensis Georgi and its application to cosmetics (I). J. Kor. Ind. Eng. Chem. 14: 657-665.
  27. Park, S. N. 2003. Protective effect of isoflavone, genistein from soybean on singlet oxygen induced photohemolysis of human erythrocytes. Korean J. Food Sci. Technol. 35: 510-518.
  28. Park, S. N. 2009. Antibacterial and antioxidative activities of Quercus acutissima carruth leaf extracts and isolation of active ingredients. J. Soc. Cosmet. Scientists Korea 35: 159-169.
  29. Pereira, C. A. M., J. H. Yariwake, and M. Mccullagh. 2005, Distinction of the C-glucosylflavone isomer paors orientin/ isoorientin and vitexin/isovitexin using HPLC-MS exact mass measurement and in-source CID. Phytochem. Anal. 16: 295-301. https://doi.org/10.1002/pca.820
  30. Seiberg, M. 2001. Keratinocyte-melanocyte interation during melanosome transfer. Pigment. Cell Res. 14: 236-242. https://doi.org/10.1034/j.1600-0749.2001.140402.x
  31. Sharov, V. S., V. A. Kazamanov, and Y. A. Vladimirov. 1989. Selective sensitization of chemiluminescence resulted from lipid and oxygen radical reactions. Free Radical Biology & Medicine 7: 237-242. https://doi.org/10.1016/0891-5849(89)90130-5
  32. Sohala, R. S. and W. C. Orrb. 2012. The redox stress hypothesis of aging. Free Radic. Biol. Med. 52: 539-555. https://doi.org/10.1016/j.freeradbiomed.2011.10.445
  33. Takashi, Y., M. Kazuko, H. Tsutomu, O. Tomoko, U. Ikue, K. Keilo, F. Yuzaburo, and O. Takuo. 1989. Studies on inhibition mechanism of autoxidation by tannins and flavonoids. V. radical- scavenging effects of tannins and related polyphenols on 1,1-diphenyl-2-picrylhydrazyl radical. Chem. Pharm. Bull. 37: 1919-1921. https://doi.org/10.1248/cpb.37.1919
  34. Tang, Y., G. Chen, J. Zhang, and S. Z. Mu. 2011. Chemical composition and the regional effect of Vitex negundo Linn. var. cannabifolia (Sieb.et Zucc.) Hand.-Mazz. essential oils and the regional effect on it. J. Chem. Soc. Pak. 33: 744-746.
  35. Tripath, Y. B. and O. P. Tiwari. 2007. Antioxidant properties of different fractions of Vitex negundo Linn. Food Chemistry. 100: 1170-1176. https://doi.org/10.1016/j.foodchem.2005.10.069
  36. Yaar, M. and B. A. Gilchrest. 2007. Photoageing : mechanism, prevention and therapy. Br. J. Dermatol. 157: 874-887. https://doi.org/10.1111/j.1365-2133.2007.08108.x
  37. Yamakoshi, J., F. Otsuka, A. Sano, S. Tokutake, M. Saito, M. Kikuchi, and Y. Kubota. 2003. Lightening effect on ultravioletinduced pigmentation of guinea pig skin by oral administration of a proanthocyanidin-rich extract from grape seeds. Pig. Cell Res. 16: 629-638. https://doi.org/10.1046/j.1600-0749.2003.00093.x

피인용 문헌

  1. 황칠나무 잎 추출물의 세포 항산화 활성과 미백활성 측정 vol.41, pp.4, 2013, https://doi.org/10.4014/kjmb.1311.11001
  2. 마디풀 추출물의 세포 보호 효과 및 주성분 분석 vol.42, pp.1, 2013, https://doi.org/10.4014/kjmb.1311.11010
  3. 니아울리 잎 추출물의 항산화 효과 및 성분 분석 vol.31, pp.4, 2014, https://doi.org/10.12925/jkocs.2014.31.4.771
  4. Inhibitory effects of mung bean (Vigna radiata L.) seed and sprout extracts on melanogenesis vol.25, pp.2, 2016, https://doi.org/10.1007/s10068-016-0079-6
  5. 잘피(Zostera marina) 추출물의 항균효과에 대한 연구 vol.33, pp.2, 2016, https://doi.org/10.12925/jkocs.2016.33.2.225
  6. Zingiber mioga Extract Improves Moisturization and Depigmentation of Skin and Reduces Wrinkle Formation in UVB-Irradiated HRM-2 Hairless Mice vol.11, pp.3, 2013, https://doi.org/10.3390/app11030976