DOI QR코드

DOI QR Code

Ligand Effect in Recycled CNT-Pd Heterogeneous Catalyst for Decarboxylative Coupling Reactions

  • Kim, Ji Dang (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Pyo, Ayoung (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Park, Kyungho (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Kim, Gwui Cheol (Jeonnam Nano Bio Research Center) ;
  • Lee, Sunwoo (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Choi, Hyun Chul (Department of Chemistry and Institute of Basic Science, Chonnam National University)
  • Received : 2013.03.15
  • Accepted : 2013.04.20
  • Published : 2013.07.20

Abstract

We present here an efficient and simple method for preparation of highly active Pd heterogeneous catalyst (CNT-Pd), specifically by reaction of dichlorobis(triphenylphosphine)palladium ($Pd(PPh_3)_2Cl_2$) with thiolated carbon nanotubes (CNTs). The as-prepared CNT-Pd catalysts demonstrated an excellent catalytic activity for the carbon-carbon (C-C) cross-coupling reactions (i.e. Suzuki, Stille, and decarboxylative coupling reactions) under mild conditions. The CNT-Pd catalyst could easily be removed from the reaction mixture; additionally, in the decarboxylative coupling of iodobenzene and phenylpropiolic acid, it showed a six-times recyclability, with no loss of activity. Moreover, once its activity had decreased by repeated recycling, it could easily be reactivated by the addition of phosphine ligands. The remarkable recyclability of the decarboxylative coupling reaction is attributable to the high degree of dispersion of Pd catalysts in CNTs. Aggregation of the Pd catalysts is inhibited by their strong adhesion to the thiolated CNTs during the chemical reactions, thereby permitting their recycling.

Keywords

References

  1. Tsuji, J. Palladium Reagents and Catalysts, 2nd ed.; Wiley: Chichester, 2004.
  2. Mehnert, C. P.; Weaver, D. W.; Ying, J. Y. J. Am. Chem. Soc. 1998, 120, 12289-12296. https://doi.org/10.1021/ja971637u
  3. Mehnert, C. P.; Ying, J. Y. Chem. Commun. 1997, 2215-2216.
  4. Gopidas, K. R.; Whitesell, J. K.; Fox, M. A. Nano Lett. 2003, 3, 1757-1760. https://doi.org/10.1021/nl0348490
  5. Yeung, L. K.; Crooks, R. M. Nano Lett. 2001, 1, 14-17. https://doi.org/10.1021/nl0001860
  6. Hamill, N. A.; Hardacre, C.; McMath, S. E. J. Green Chem. 2002, 4, 139-142. https://doi.org/10.1039/b109844f
  7. Deshmukh, R. R.; Rajagopal, R.; Srinivasan, K. V. Chem. Commun. 2001, 1544-1555.
  8. Kim, J. Y.; Park, K.; Bae, S. Y.; Kim, G. C.; Lee, S.; Choi, H. C. J. Mater. Chem. 2011, 21, 5999-6005. https://doi.org/10.1039/c0jm03467c
  9. Kim, J. Y.; Jo, Y.; Kook, S. K.; Lee, S.; Choi, H. C. J. Mol. Catal. A-Chem. 2010, 323, 28-32. https://doi.org/10.1016/j.molcata.2010.02.032
  10. Yoon, B.; Wai, C. M. J. Am. Chem. Soc. 2005, 127, 17174-17175. https://doi.org/10.1021/ja055530f
  11. Pathak, S.; Greci, M. T.; Kwong, R. C.; Mercado, K.; Prakash, G. K. S.; Olah, G. A.; Thompson, M. E. Chem. Mater. 2000, 12, 1985-1989. https://doi.org/10.1021/cm0001556
  12. Klingelhofer, S.; Heitz, W. A.; Ostereich, S.; Forster, S.; Antonietti, M. J. Am. Chem. Soc. 1997, 119, 10116-10120. https://doi.org/10.1021/ja9714604
  13. Du, Q.; Zhang, W.; Ma, H.; Zheng, J.; Zhou, B.; Li, Y. Tetrahedron 2012, 68, 3577-3584. https://doi.org/10.1016/j.tet.2012.03.008
  14. Wittmann, S.; Schaetz, A.; Grass, R. N.; Stark, W. J.; Reiser, O. Angew. Chem. Int. Ed. 2010, 49, 1867-1870. https://doi.org/10.1002/anie.200906166
  15. Amali, A. J.; Rana, R. K. Green Chem. 2009, 11, 1781-1786. https://doi.org/10.1039/b916261p
  16. Soomro, S. S.; Ansari, F. L.; Chatziapostolou, K.; Kohler, K. J. Catal. 2010, 273, 138-146. https://doi.org/10.1016/j.jcat.2010.05.007
  17. Richardson, J. M.; Jones, C. W. J. Catal. 2007, 251, 80-93. https://doi.org/10.1016/j.jcat.2007.07.005
  18. Heidenreich, R. G.; Krauter, J. G. E.; Pietsch, J.; Kohler, K. J. Mol. Catal. A-Chem. 2002, 182, 499-509.
  19. Yuan, B.; Pan, Y.; Li, Y.; Yin, B.; Jiang, H. Angew. Chem. Int. Ed. 2010, 49, 4054-4058. https://doi.org/10.1002/anie.201000576
  20. Li, P.; Wang, L.; Zhang, L.; Wang, G.-W. Adv. Synth. Catal. 2012, 354, 1307-1318. https://doi.org/10.1002/adsc.201100725
  21. Dutta, P.; Sarkar, A. Adv. Synth. Catal. 2011, 353, 2814-2822. https://doi.org/10.1002/adsc.201100168
  22. Stevens, P. D.; Li, G.; Fan, J.; Yen, M.; Gao, Y. Chem. Commun. 2005, 4435-4437.
  23. Rumi, L.; Scheuermann, G. M.; Muelhaupt, R.; Bannwarth, W. Helv. Chim. Act. 2011, 94, 966-976. https://doi.org/10.1002/hlca.201000412
  24. Jo, Y.; Kim, J. Y.; Oh, I.- K.; Choi, H. C.; Lee, S. Bull. Korean Chem. Soc. 2010, 31, 1735-1738. https://doi.org/10.5012/bkcs.2010.31.6.1735
  25. Sullivan, J. A.; Flanagan, K. A.; Hain, H. Catal. Today 2009, 145, 108-113. https://doi.org/10.1016/j.cattod.2008.05.026
  26. Scheuermann, G. M.; Rumi, L.; Steurer, P.; Bannwarth, W.; Mulhaupt, R. J. Am. Chem. Soc. 2009, 131, 8262-8270. https://doi.org/10.1021/ja901105a
  27. Moon, J.; Jeong, M.; Nam, H.; Ju, J.; Moon, J. H.; Jung, H. M.; Lee, S. Org. Lett. 2008, 10, 945-948. https://doi.org/10.1021/ol703130y
  28. Kolarovi , A.; Schnurch, M.; Mihovilovic, M. D. J. Org. Chem. 2011, 76, 2613-2618. https://doi.org/10.1021/jo1024927
  29. Moon, J.; Jang, M.; Lee, S. J. Org. Chem. 2009, 74, 1403-1406. https://doi.org/10.1021/jo802290r
  30. Kim, H.; Lee, P. H. Adv. Synth. Catal. 2009, 351, 2827-2832. https://doi.org/10.1002/adsc.200900502
  31. Kolarovi , A.; Faberova, Z. J. Org. Chem. 2009, 74, 7199-7202. https://doi.org/10.1021/jo901377b
  32. Park, K.; Bae, G.; Moon, J.; Choe, J.; Song, K. H.; Lee, S. J. Org. Chem. 2010, 75, 6244-6251. https://doi.org/10.1021/jo101398a
  33. Ranjit, S.; Duan, Z.; Zhang, P.; Liu, X. Org. Lett. 2010, 12, 4134-4136. https://doi.org/10.1021/ol101729k
  34. Jia, W.; Jiao, N. Org. Lett. 2010, 12, 2000-2003. https://doi.org/10.1021/ol1004615
  35. Zhang, W.-W.; Zhang, X.-G.; Li, J.-H. J. Org. Chem. 2010, 75, 5259-5264. https://doi.org/10.1021/jo1010284
  36. Feng, C.; Loh, T.-P. Chem. Commun. 2010, 46, 4779-4781. https://doi.org/10.1039/c0cc00403k
  37. King, J. C. R. C. Handbook of X-ray Photoelectron Spectroscopy; Physical Electronics Inc.: 1995; pp 118-119.
  38. Wang, L.; Dehe, D.; Philippi, T.; Seifert, A.; Ernst, S.; Zhou, Z.; Hartmann, M.; Taylor, Singh, R. N. K. A. P.; Jia, M.; Thiel, W. R. Catal. Sci. Technol. 2012, 2, 1188-1195. https://doi.org/10.1039/c2cy00535b
  39. Cai, M.; Sha, J.; Xu, Q. J. Mol. Catal. A-Chem. 2007, 268, 82-86. https://doi.org/10.1016/j.molcata.2006.12.011
  40. Cairns, G. R.; Cross, R. J.; Stirling, D. J. Mol. Catal. A-Chem. 2011, 172, 207-218.
  41. Rodriguez, N.; Goossen, L. J. Chem. Soc. Rev. 2011, 40, 5030-5048. https://doi.org/10.1039/c1cs15093f
  42. Seechurn, C. C. C. J.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem. Int. Ed. 2012, 51, 5062-5085. https://doi.org/10.1002/anie.201107017
  43. Park, K.; Bae, G.; Moon, J.; Choe, J.; Song, K. H.; Lee, S. J. Org. Chem. 2010, 75, 6244-6251. https://doi.org/10.1021/jo101398a
  44. Mino, T.; Shirae, Y.; Sakamoto, M.; Fujita, T. J. Org. Chem. 2005, 70, 2191-2194. https://doi.org/10.1021/jo048107i
  45. Saleem, F.; Rao, G. K.; Singh, P.; Singh, A. K. Organometallics 2013, 32, 387-395. https://doi.org/10.1021/om3006273
  46. Sullivan, J. A.; Flanagan, K. A.; Hain, H. Catal. Today 2009, 145, 108-113. https://doi.org/10.1016/j.cattod.2008.05.026
  47. Costa, N. J. S.; Kiyohara, P. K.; Monteiro, A. L.; Coppel, Y.; Philippot, K.; Rossi, L. M. J. Catal. 2010, 276, 382-389. https://doi.org/10.1016/j.jcat.2010.09.028
  48. Parrish, C. A.; Buchwald, S. L. J. Org. Chem. 2001, 66, 3820-3827. https://doi.org/10.1021/jo010025w

Cited by

  1. Styrene hydrogenation performance of Pt nanoparticles with controlled size prepared by atomic layer deposition vol.5, pp.8, 2015, https://doi.org/10.1039/C5CY00598A