DOI QR코드

DOI QR Code

Analysis of Microbial Community Structure for Effective Removal of Mixed Wastewater in Biological Wastewater Treatment

혼합폐수의 효율적인 처리를 위한 생물학적 처리공정 내의 미생물 군집 특성 분석

  • Son, Hyeng-Sik (Department of Microbiology, Pusan National University) ;
  • Son, Hee-Jong (Water Quality Institute, Busan Water Authority) ;
  • Lee, Sang-Joon (Department of Microbiology, Pusan National University)
  • 손형식 (부산대학교 미생물학과) ;
  • 손희종 (부산시 상수도사업본부 수질연구소) ;
  • 이상준 (부산대학교 미생물학과)
  • Received : 2013.03.27
  • Accepted : 2013.05.20
  • Published : 2013.06.27

Abstract

Depending on season, mixed wastewater can show great deviations in terms of the influent ratios of tannery and seafood-wastewater. Increases in the ratio of tannery wastewater in influent water also result in increases in the concentration of chromium, which decreases the ratio of BOD/T-N so that the removal efficiency of organic and nitrogen pollutants in biological wastewater treatment deteriorates. No substantial differences occur in the ratios of Eubacteria/total bacteria as the ratio between tannery wastewater and seafood wastewater changes in the influent water. In contrast, the cell numbers and activities of Eubacteria and total bacteria significantly decline with increasing ratios of tannery wastewater in the influent water. Stable removal of organic and nitrogen pollutants by biological wastewater treatments leads to dominance of Proteobacteria groups in all biological treatment basins. In aeration and oxic basins, ${\gamma}$-Proteobacteria account for approximately 21% of the Eubacteria groups, at $1.9{\times}10^9{\sim}2.0{\times}10^9$ cells/mL, while in an anoxic basin, ${\beta}$-Proteobacteria account for approximately 19% of the Eubacteria groups, at $1.3{\times}10^9$ cells/mL. However, a substantial decline in dominance of approximately 11% occurs for ${\gamma}$-Proteobacteria in aeration and oxic basins and about 1% for ${\beta}$-Proteobacteria in an anoxic basin. Mixed wastewater that undergoes extensive property changes of the influent water shows an efficiency of biological treatment that is greatly influenced by the ratio of dominant Proteobacteria groups.

Keywords

References

  1. Andreasen, K. and P. H. Nielsen (1997) Application of microauto-radiography to the study of substrate uptake by filamentous microorganisms in activated sludge. Appl. Environ. Microbiol. 63: 3662- 3668.
  2. Chen, H. J., Y. Z. Lin, J. M. Fanjiang, and C. Fan (2013) Microbial community and treatment ability investigation in AOAO process for the optoelectronic wastewater treatment using PCR-DGGE biotechnology. Biodegradation 24: 227-243. https://doi.org/10.1007/s10532-012-9579-0
  3. Nielsen, P. H., K. Andreasen, M. Wagner, L. L. Blackall, H. Lemmer, and R. J. Seviour (1998) Variability of type 021N in activated sludge as determined by in situ substrate uptake pattern and in situ hybridization with fluorescent rRNA targeted probes. Water Sci. Technol. 37: 423-440. https://doi.org/10.1016/S0273-1223(98)00170-X
  4. Wong, M. T., T. Mino, R. J. Seviour, M. Onuki, and W. T. Liu (2005) In situ identification and characterization of the microbial community structure of full-scale enhanced biological phosphorous removal plants in Japan. Water Res. 39: 2901-2914. https://doi.org/10.1016/j.watres.2005.05.015
  5. Eikelboom, D. H. (2000) Process Control of Activated Sludge Plants by Microscopic Investigation. IWA Publishing, London, UK.
  6. Eikelboom, D. H. (2006) Identification and Control of Filamentous Microorganisms in Industrial Wastewater Treatment Plants. IWA Publishing. London, UK.
  7. Kloep, F., I. Roske, and T. R. Neu (2000) Performance and microbial structure of a nitrifying fluidized-bed reactor. Water Res. 34: 311-319. https://doi.org/10.1016/S0043-1354(99)00123-2
  8. Lazarova, V., D. Bellahcen, J. Manem, D. A. Stahl, and B. E. Rittmann (1999) Influence of operating conditions on population dynamics in nitrifying biofilms. Water Sci. Technol. 39: 5-11. https://doi.org/10.1016/S0273-1223(99)00144-4
  9. Ohashi, A., D. G. Viraj de Silva, B. Mobarry, J. A. Manem, D. A. Stahl, and B. E. Rittmann (1995) Influence of substrate C/N ratio on the structure of multi-species biofilms consisting of nitrifiers and heterotrophs. Water Sci. Technol. 32: 75-84.
  10. Zhang, T. C. and P. L. Bishop (1996) Evaluation of substrate and pH effects in a nitrifying biofilm. Water Environ. Res. 68: 1107- 1115. https://doi.org/10.2175/106143096X128504
  11. Araya, R., K. Tani, T. Tagaki, N. Yamaguchi, and M. Nasu (2003) Bacterial activity and community composition in stream water and biofilm from an urban river determined by fluorescent in situ hybridization and DGGE analysis. FEMS Microbiol. Ecol. 43: 111-119. https://doi.org/10.1111/j.1574-6941.2003.tb01050.x
  12. Dong, X. and G. B. Reddy (2010) Soil bacterial communities in constructed wetlands treated with swine wastewater using PCRDGGE technique. Bioresour. Technol. 101: 1175-1182. https://doi.org/10.1016/j.biortech.2009.09.071
  13. Kim, W., S. G. Shin, J. Lim, and S. Hwang (2013) Effect of temperature and hydraulic retention time on volatile fatty acid production based on bacterial community structure in anaerobic acidogenesis using swine wastewater. Bioprocess Biosyst. Eng. 36: 791-798. https://doi.org/10.1007/s00449-013-0905-7
  14. Patil, S. S., M. S. Kumar, and A. S. Ball (2010) Microbial community dynamics in anaerobic bioreactors and algal tanks treating piggery wastewater. Appl. Microbiol. Biotechnol. 87: 353-363. https://doi.org/10.1007/s00253-010-2539-x
  15. Li, J., L. Zhang, Q. Ban, A. K. Jha, and Y. Xu (2013) Diversity and distribution of methanogenic Archaea in an anaerobic baffled reactor (ABR) treating sugar refinery wastewater. J. Microbial. Biotechnol. 23: 137-143. https://doi.org/10.4014/jmb.1204.04043
  16. Nielsen, P. H., C. Kragelund, R. J. Seviour, and J. L. Nielsen (2009) Identity and ecophysiology of filamentous bacteria in activated sludge. FEMS Microbiol. Rev. 33: 969-998. https://doi.org/10.1111/j.1574-6976.2009.00186.x
  17. Jang, A., P. L. Bishop, S. Okabe, S. G. Lee, and I. S. Kim (2002) Effect of dissolved oxygen concentration on the biofilm and in situ analysis by fluorescence in situ hybridization (FISH) and microelectrodes. Water Sci. Technol. 47: 49-57.
  18. Eschenhagen, M., M. Schuppler, and I. Roske (2003) Molecular characterization of the microbial community structure in two activated sludge systems for the advanced treatment of domestic effluents. Water Res. 27: 3224-3232.
  19. Ni, B. J., B. L. Hu, F. Fang, W. M. Xie, B. Kartal, X. W. Liu, G. P. Cheng, M. Jetten, P. Zheng, and H. Q. Yu (2010) Microbial and physicochemical characteristics of compact anaerobic ammoniumoxidizing granules in an upflow anaerobic sludge blanket reactor. Appl. Environ. Microbiol. 76: 2652-2656. https://doi.org/10.1128/AEM.02271-09
  20. Yu, T., R. Qi, D. Li, Y. Zhang, and M. Yang (2010) Nitrifier characteristics in submerged membrane bioreactors under different sludge retention times. Water Res. 44: 2823-2830. https://doi.org/10.1016/j.watres.2010.02.021
  21. Niemi, R. M., I. Heiskanen, R. Heine, and L. Rapala (2009) Previously unclutured $\beta$-proteobacteria dominate in biologically active granule activated carbon (BAC) filters. Water Res. 43: 5075-5086. https://doi.org/10.1016/j.watres.2009.08.037
  22. Fuhrman, J. A. and F. Azam (1982) Thymidine incorporation as a measure of heterotrophic bacterio-plankton production in marine surface waters: Evaluation and field results. Mar. Biol. 66: 109-120. https://doi.org/10.1007/BF00397184
  23. Parsons, T. R., Y. Maita, and C. M. Lalli (1984) A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon, New York, USA.
  24. Glöckner, F. O., B. M. Fuchs, and R. Amann (1999) Bacterioplankton compositions of lakes and oceans: A first comparison based on fluorescence in situ hybridization. Appl. Environ. Microbiol. 65: 3721-3726.
  25. Wagner, M., R. Amann, H. Lemmer, and K. Scheleifer (1993) Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl. Environ. Microbiol. 59: 1520- 1525.
  26. Wagner, M., R. Erhart, W. Manz, R. Amann, H. Lemmer, D. Wedi, and K. H. Schleifer (1994) Development of an rRNA-targeted oligonucleotide probe specific for the genus acinetobacter and its application for in situ monitoring in activated sludge. Appl. Environ. Microbial. 60: 792-800.
  27. Mobarry, B. K., M. Wagner, V. Urbain, B. E. Rittmann, and D. A. Stahl (1996) Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl. Environ. Microbiol. 62: 2156-2162.
  28. Kim, D. J., D. W. Han, S. C. Lee, B. G. Park, I. Kwon, C. K. Sung, and W. C. Park (2002) Wastewater treatment and microbial structure analysis by fluorescence in situ hybridization in a biofilm reactor. Korean J. Biotechnol. Bioeng. 17: 80-87.
  29. Juretschko, S., A. Loy, A. Lehner, and M. Wagner (2002) The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. Syst. Appl. Microbiol. 25: 84-99. https://doi.org/10.1078/0723-2020-00093
  30. Nübel, U., F. Garcia-Pichel, and G. Muyzer (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63: 3327-3332.
  31. Manz, W., M. Eisenbrecher, T. R. Neu, and U. Szewzyk (1998) Abudance and spatial organization of gram-negative sulfate-reducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides. FEMS Micribiol. Ecol. 25: 43-61. https://doi.org/10.1111/j.1574-6941.1998.tb00459.x
  32. Meier, H., R. Amann, W. Ludwig, and K. H. Schleifer (1999) Specific oligonucleotide probes for in situ detection of a major group of gram-positive bacteria with Low DNA G+C content. Syst. Appl. Microbiol. 22: 186-196. https://doi.org/10.1016/S0723-2020(99)80065-4
  33. Wong, P. T. and J. T. Trevors (1988) Chromium toxicity to algae and bacteria. pp. 305-315. In J.O. Nriagu and E. Nieboer (eds.), Chromium in the Natural and Human Environments. Wiley, New York, USA.
  34. Zakaria, Z. A., Z. Zakaria, S. Surif, and W. A. Ahmad (2007) Biological detoxification of Cr(VI) using wood-husk immobilized Acinetobacter haemolyticus. J. Hazard. Mater. 148: 164-171. https://doi.org/10.1016/j.jhazmat.2007.02.029
  35. Prescott, L. M., J. P. Harley, and D. A. Klein (2009) Microbiology. 7th ed. McGraw-Hill Higher Education. New York, USA.
  36. Delong, E. F., G. S. Wickham, and A. A. Davis (1993) Phylogenetic diversity of substrate marine microbial communities from the Atlantics and Pacific Oceans. Science 243: 1360-1363.
  37. Ward, N. l, J. F. Challacombe, P. H. Janssen, B. Henrissat, P. M. Coutinho, M. Wu, G. Xie, D. H. Haft, M. Sait, and J. Badger (2009) Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl. Environ. Microbial. 75: 2046-2056. https://doi.org/10.1128/AEM.02294-08
  38. Chouari, R., D. L. Paslier, P. Daegelen, C. Dauga, J. Weissenbach, and A. Sghir (2010) Molecular anayses of the microbial community composition of an anoxic basin of a municipal wastewater treatment plant reveal a novel lineage of Proteobacteria. Microb. Ecol. 60: 272-281. https://doi.org/10.1007/s00248-009-9632-7