DOI QR코드

DOI QR Code

Reliable Measurement Methodology of Wafer Bonding Strength in 3D Integration Process Using Atomic Force Microscopy

삼차원집적공정에서 원자현미경을 활용한 Wafer Bonding Strength 측정 방법의 신뢰성에 관한 연구

  • Choi, Eunmi (Graduate School of Nanobio and Energy Engineering, Chungang University) ;
  • Pyo, Sung Gyu (School of Integrative Engineering, Chungang University)
  • 최은미 (중앙대학교 나노바이오에너지공학과) ;
  • 표성규 (중앙대학교 융합공학부)
  • Received : 2013.06.02
  • Accepted : 2013.06.26
  • Published : 2013.06.30

Abstract

The wafer bonding process becomes a flexible approach to material and device integration. The bonding strength in 3-dimensional process is crucial factor in various interface bonding process such as silicon to silicon, silicon to metals such as oxides to adhesive intermediates. A measurement method of bonding strength was proposed by utilizing AFM applied CNT probe tip which indicated the relative simplicity in preparation of sample and to have merit capable to measure regardless type of films. Also, New Tool was utilized to measure of tip radius. The cleaned $SiO_2$-Si bonding strength of SPFM indicated 0.089 $J/m^2$, and the cleaning result by RCA 1($NH_4OH:H_2O:H_2O_2$) measured 0.044 $J/m^2$, indicated negligible tolerance which verified the possibility capable to measure accurate bonding strength. And it could be confirmed the effective bonding is possible through SPFM cleaning.

Keywords

References

  1. F. Niklaus, M. Lapisa, S. J. Bleiker, V. Dubois, N. Roxhed, A. C. Fischer, F. Forsberg, G.Stemme, "Wafer-level heterogeneous 3D integration for MEMS and NEMS", Low Temperature Bonding for 3D Integration, 3rd., pp.247-252, Wiley: Tokyo (2012).
  2. W.L. Chow, C.C. Yap, D. Tan, M. Shakerzadeh, M.K. Samani, C. Brun, E.H.T. Teo, D. Baillargeat and B.K. Tay , "Carbon based multi-functional materials towards 3D system integration", IEEE MTT-S., pp.1-3, Montreal, QC, Canada (2012).
  3. J.H. Lau, "Recent Advances and New Trends in Nanotechnology and 3D Integration for Semiconductor Industry", 3D Systems Integration Conference (3DIC), 2011 IEEE International (2012).
  4. Y. Ohara, L. Kangwook, T. Fukushima, T. Tanaka and M. Koyanagi, "Novel detachable bonding process with wettability control of versatile chip level 3D integration", 3DIC., 3(2), 1 (2011).
  5. J. Y. Kwon, D. J. Lee and K. B. Kim, "Review Paper Transparent Amorphous Oxide Semiconductor Thin Film Transistor", Electronic Materials Letters., 7(1), 1 (2011). https://doi.org/10.1007/s13391-011-0301-x
  6. K. Watanabe, K. Wada, H. Kaneda, K. Ide, M. Kato, and T. Wada, "Microscopy and Electrical Properties of Ge Ge Interfaces Bonded by Surface-Activated Wafer Bonding Technology", Jpn J. Appl. Phys., 50. pp.015701-015701-5 (2010).
  7. J.N. Kuo and Y. K. Lin, "Fabrication of 20 nm Shallow Nanofluidic Channels Using Coverslip Thin Glass-Glass Fusion Bonding Method", Jpn J. Appl. Phys., 51, pp.095202-095202-5 (2011).
  8. Y. Uryu and T. Asano, "CMOS Image Sensor Using SOIMOS/ Photodiode Composite Photodetector Device", Jpn J. Appl. Phys., 41, pp. 2620-2624 (2002). https://doi.org/10.1143/JJAP.41.2620
  9. S.G. Pyo, S. H. Park, and S. Kim, "3D Interconnect Process Integration and Characterization of Back Side Illuminated CMOS Image Sensor with 1.75um Pixels", Journal of The Electrochemical Society., 156(6), J143 (2009). https://doi.org/10.1149/1.3106088
  10. X. Liu, A. Zia, M. R. LeRoy, S. Raman, R. Clark, R. Kraft and J. F. McDonal, " A three-dimensional DRAM using floating body cell in FDSOI devices", Design and Diagnostics of Electronic Circuits & Systems (DDECS), 2012 IEEE 15th International Symposium on (2012).
  11. C.F. QUATE, "Acoustic microscopy with mechanical scanning- A Review", Proceedings of the IEEE., 67(8), 1092 (1979). https://doi.org/10.1109/PROC.1979.11406
  12. Maszara, W. P, Goetz G, Caviglia A, McKitterick J B, "Bonding of silicon wafer for silicon-on-insulator", Journal of Applied Physics., 64(10), 4943 (1988) https://doi.org/10.1063/1.342443
  13. T. Marhini, J. Steinkirchner, and U. Gosele, "The Crack Opening Method in Silicon Wafer Bonding : How Useful Is It?", Journal of The Electrochemical Society., 144(1), 354 (1997). https://doi.org/10.1149/1.1837409
  14. T. Abe, M. Nakano, T. Itoh. "Silicon wafer bonding process technology for SOI structures" In Proceedings of the Fourth International Symposium Silicon-On-Insulator Technology and Devices, edited by Dennis N. Schmidt. The Electrochemical Society (1990).
  15. O. Vallin, K. Jonsson, and U. Lindberg, "Adhesion quantification methods for wafer bonding" Materials Science and Engineering R., 50(4), 109 (2005), https://doi.org/10.1016/j.mser.2005.07.002
  16. P.G. Charalambides, J. Lund, A. G. Evans and R. M. McMeeking"A Test Specimen for Determining the Fracture Resistance of Bimaterial Interfaces", J. Appl. Mech., 56(1), 77 (1998).
  17. 권용재, 석종원, J. Q. Lu, T. S. Cale, R. J. Gutmann, "고온순환 공정이 BCB와 PECVD 산화규소막 계면의 본딩 결합에 미치는 영향에 대한연구", Korea Chem. Eng. Res., 46(2), 386 (2008). (in Korean)
  18. 송오성, 이상현, "사점굽힙시험법에 의한 적층형 전자소자의 접합강도 측정", 정보기술연구소 논문집., 4, 55 (2002).
  19. R. Tadepalli and C. V. Thompson, "Formation of Cu-Cu interfaces with ideal adhesive strengths via room temperature pressure bonding in ultrahigh vacuum", Appl. Phys. Lett., 90, pp.151919-151919-3 (2007). https://doi.org/10.1063/1.2720297
  20. J. H. Lee, W. S. Kang, B. S. Choi, S. W. Choi, J. H. Kim, "fabrication of carbond nanotube AFM probes using the Langmuir- Blodgett technique", Ultramicroscopy., 108, pp.1163-1167 (2008). https://doi.org/10.1016/j.ultramic.2008.04.073
  21. K. Ljungberg, A. Soderbarg and U. Jansson, "improved direct bonding of Si and SiO2 surfaces by cleaning in H2SO4: H2O2:HF", Appl. Phys. Lett., 67, pp.650-652 (1995). https://doi.org/10.1063/1.115191

Cited by

  1. Effects of Synthetic Temperature and Amount of Oleylamine in Synthesis of Cu-Based Nanoparticles Using Heptyl Alcohol Solvent vol.21, pp.3, 2014, https://doi.org/10.6117/kmeps.2014.21.3.057