DOI QR코드

DOI QR Code

Anti-inflammatory effects of Lespedeza Cuneata in vivo and in vitro

야관문(夜關門)의 항염증효과(抗炎症效果)

  • Lee, Hoil (Daegu Haany University, College of Oriental Medicine, Dept. of ophthalmology, otolaryngology and dermatology) ;
  • Jung, Ji Yun (Daegu Haany University, College of Oriental Medicine, Dept. of Herbal formula) ;
  • Hwangbo, Min (Daegu Haany University, College of Oriental Medicine, Dept. of ophthalmology, otolaryngology and dermatology) ;
  • Ku, Sea Kwang (Daegu Haany University, College of Oriental Medicine, Dept. of Anatomy) ;
  • Kim, Young Woo (Daegu Haany University, College of Oriental Medicine, Dept. of Herbal formula) ;
  • Jee, Seon Young (Daegu Haany University, College of Oriental Medicine, Dept. of ophthalmology, otolaryngology and dermatology)
  • 이호일 (대구한의대학교 한의과대학 외관과학교실) ;
  • 정지윤 (대구한의대학교 한의과대학 방제학교실) ;
  • 황보민 (대구한의대학교 한의과대학 외관과학교실) ;
  • 구세광 (대구한의대학교 한의과대학 해부학교실) ;
  • 김영우 (대구한의대학교 한의과대학 방제학교실) ;
  • 지선영 (대구한의대학교 한의과대학 외관과학교실)
  • Received : 2013.04.28
  • Accepted : 2013.07.30
  • Published : 2013.07.30

Abstract

Objectives : Lespedeza Cuneata has been used to treat leukorrhea, asthma, stomach pain, diarrhea, acute mastitis, in Korean traditional medicine. According to recent studies, Lespedeza Cuneata has antioxidation, hypoglycemia, cell protective, insulin secretion, whitening, corpora cavernosa smooth muscle relaxation and antimicrobial activities, but it has been rarely conducted to evaluate the immuno-biological activity. The present study was examined to evaluate the anti-inflammatory effects of the Lespedeza Cuneata MeOH extract (LCE) in vivo and in vitro. Methods : In vitro, inflammatory mediators, such as cytokines, nitric oxide and prostaglandin $E_2$ were detected after the addition of LPS with or without LCE in Raw 264.7 macrophage cell line. In vivo, anti-edema effect of LCE was determined in the carrageenan-induced paw edema model in rats. Results : In vitro assay, LCE decreased release of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) via suppression of iNOS and COX-2 expression. LCE inhibited the phosphorylation of $I{\kappa}B$ indicating the suppression of NF-${\kappa}B$ pathway. In vivo assay, LCE significantly inhibited the formation of paw edema induced by carrageenan injection in rats. LCE effectively inhibited increases of hind paw skin thickness and inflammatory cell infilterations. Conclusion : These findings demonstrate that LCE has inhibitory effect on inflammatory mediators in LPS-activated Raw 264.7 cells and on paw edema in carrageenan-stimulated rats, showing the possibility of anti-inflammatory use of Lespedeza Cuneata.

Keywords

References

  1. Park CY, Ryu HJ. Inflammation and Obesity. J Korean Soc Endocrinol. 2004 ; 19(2) : 97-108.
  2. Nathan C. Points of control in inflammation. Nature. 2002 ; 420(6917) : 846-52. https://doi.org/10.1038/nature01320
  3. Tracey KJ. The inflammatory reflex. Nature. 2002 ; 420(6917) : 853-9. https://doi.org/10.1038/nature01321
  4. Kim CM, Shin MG, Ahn DG, Lee GS, Kang BS, Kang SS. The Chinese Herbal Dictionary. Seoul : Jeongdam. 1997 : 2770-3.
  5. Kim TH, Ryu SN. Antioxidant activity of methanol extract from aerial parts in Lespedeaza cuneata G. Don. Korean J Crop Sci. 2008 ; 53 : 121-23.
  6. Kwon DJ, Kim JK, Ham YH, Bae YS. Flavone glycosides from the aerial parts of Lespedeaza cuneata G. Don. J Korean Soc Appl Biol Chem. 2007 ; 50 : 344-7.
  7. Kim TJ. Wild Flowers and Resources Plants in Korea (2). Seoul : SNU Press. 2008 : 457.
  8. Chang JK. Wild Plants for Health. Seoul : Nexus books. 1996 : 72.
  9. Ahn DG. Color Pictures of Korean Medicinal Herbs. Seoul : Gyohaksa. 1998 : 111.
  10. Matsuura S, Iinuma M, Ito E, Takami H, Kagei K. Studies on the constituents of the useful plants. Ⅷ. The Constituents of Lespedeaza cuneata G. Don. Yakugaku Zasshi. 1978 ; 98 : 1542-4. https://doi.org/10.1248/yakushi1947.98.11_1542
  11. Atsushi N, Kazuko H. C-Glycoylflavones in Lespedeaza cuneata. Chem Pharm Bull. 1980 ; 28 : 964-5. https://doi.org/10.1248/cpb.28.964
  12. Deng F, Chang J, Zhang JS. New flavonoids and other constituents from Lespedeaza cuneata. J Asian Nat Prod Res. 2007 ; 9(6-8) : 655-8. https://doi.org/10.1080/10286020600979894
  13. Kim SJ, Kim DW. Antioxidative Activity of Hot Water and Ethanol Extracts of Lespedeaza cuneata. Korean J Food Preserv. 2007 ; 14(3) : 332-5.
  14. Kim MS, Min OJ, Rhyu DY. Effect of Lespedeaza cuneata Extracts on diabetes and diabetic nephropathy. Korean J plant Res. 2008 ; 4 : 83.
  15. Lee DS, Jeong GS, An RB, Bin Li, Erisa Byun, Kim YC. Search for plant extracts with protective effects of pancreatic beta cell against oxidative stress. Kor J Pharmacogn. 2008 ; 39(4) : 335-40.
  16. Choi JS, Cho CS, Kim CJ. Cytoprotective Effect of Lespedeza Cuneata Extract on Glucose Toxicity. J Korean Oriental Med. 2010 ; 31(4) : 70-100.
  17. Jung YH, Lim CH. Bioactivity of an Extract of Lespedezea Cuneata G. Don to Rabbit Corpus Cavernosum Smooth Muscle Tone. Jour Agri Sci. 2005 ; 32(1) : 63-70.
  18. Cho EJ, Lee SG, Kim DO. The effect of Lespedeza Cuneata extract for antioxidative and whitening effect. J Life Resources & Science Res. 2009 ; 28 : 34-8.
  19. Cho EJ, Chu HM, Jung CH, Eom SH, Hur HJ, Kim DR. Effect of Phenolic Extract of Dry Leaves of Lespedeza cuneata G. Don on Antioxidant Capacity and Tyrosinase Inhibition. Kor J Hort Sci Technol. 2011 ; 29(4) : 358-65.
  20. Kim HD, Cho HR, Moon SB, Shin HD, Yang KJ, Park BR, Jang HJ, Lim LS, Lee HS, Ku SK. Effect of exopolymers from Aureobasidum pullulans on formalin-induced chronic paw inflammation in mice. J Microbiol Biotechnol. 2006 ; 16 : 1954-60.
  21. Delgado AV, McManus AT, Chambers JP. Production of tumor necrosis factor-alpha, interleukin 1-beta, interleukin 2, and interleukin 6 by rat leukocyte subpopulations after exposure to substance P. Neuropeptides. 2003 ; 37(6) : 355-61. https://doi.org/10.1016/j.npep.2003.09.005
  22. Jirik FR, Podor TJ, Hirano T, Kishimoto T, Loskutoff DJ, Carson DA, Lotz M. Bacterial lipopolysaccharide and inflammatory mediators augment IL-6 secretion by human endothelial cells. J Immunol. 1989 ; 142(1) : 144-7.
  23. Chen F, Castranova V, Shi X. New insights into the role of nuclear factor-kappaB in cell growth regulation. Am J Pathol. 2001 ; 159(2) : 387-97. https://doi.org/10.1016/S0002-9440(10)61708-7
  24. Charles AJ, Paul T, Mark W, Mark S. Immunobiology (5ed). New York : Garland. 2001 : 80.
  25. Yun HY, Dawson VL and Dawson TM. Neurobiology of nitric oxide. Crit Rev Neurobiol. 1996 ; 10 : 291-316. https://doi.org/10.1615/CritRevNeurobiol.v10.i3-4.20
  26. Mori M. Regulation of nitric oxide synthesis and apoptosis by arginase and arginine recycling. J Nutr. 2007 ; 137 : 1616S-20S. https://doi.org/10.1093/jn/137.6.1616S
  27. Weisz A, Cicatiello I and Esumi H. Regulation of the mouse inducible-type nitric oxide synthase gene promoter by interferon-gamma, bacterical lipopolysaccharide and NG-monomethyl-L-arginene. Biochem J. 1996 ; 316 : 209-15. https://doi.org/10.1042/bj3160209
  28. McCartney-Francis N, Allen JB, Mizel DE, Albina JE, Xie QW, Nathan CF and Wahl SM. Suppression of arthritis by an inhibitor of nitic oxide synthase. J Exp Med. 1993 ; 178 : 749-754. https://doi.org/10.1084/jem.178.2.749
  29. Seo WG, Pae HO, Oh GS, Chai KY, Yun YG, Kwon TO, Chung HT. Inhibitory effect of ethyl acetate fraction from Cudrania tricuspidata on the expression of nitric oxide synthase gene in RAW 264.7macrophages stimulated with interferon-and lipopolysaccharide. Gen Pharmacol. 2000 ; 35 : 21-8. https://doi.org/10.1016/S0306-3623(01)00086-6
  30. Chiou WF, Chou CJ, Chen CF. Camptothecin suppresses nitric oxide biosynthesis in RAW 264.7 macrophages. Life Sci. 2001 ; 69 : 625-35. https://doi.org/10.1016/S0024-3205(01)01154-7
  31. Lee BG, Kim SH, Zee OP, Lee KR, Lee HY, Han JW, Lee HW. Suppression of inducible nitric oxide synthase expression in RAW 264.7 macrophages by two-carboline alkaloids extracted from Melia azedarach. Eur J Pharmacol. 2000 ; 406 : 301-9. https://doi.org/10.1016/S0014-2999(00)00680-4
  32. Kawamata H, Ochiai H, Mantani N, Terasawa K. Enhanced expression of inducible nitric oxide synthase by Juzen-taiho-to in LPS-activated RAW264.7 cells, a murine macrophage cell line. Am J Chin Med. 2000 ; 28 : 217-26. https://doi.org/10.1142/S0192415X0000026X
  33. Posadas I, Terencio MC, Guillen I, Ferrandiz ML, Coloma J, Paya M, Alcaraz MJ. Co-regulation between cyclo-oxygenase-2 and inducible nitric oxide synthase expression in the time-course of murine inflammation. Naunyn Schmiedebergs Arch Pharmacol. 2000 ; 361 : 98-106. https://doi.org/10.1007/s002109900150
  34. Nathan, C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992 ; 6 : 3051-64. https://doi.org/10.1096/fasebj.6.12.1381691
  35. Grosch S, Maier TJ, Schiffmann S, Geisslinger G. Cyclooxygenase-2 (COX-2)-independent anticarcinogenic effects of selective COX-2 inhibitors. J Natl Cancer Inst. 2006 ; 98(11) : 736-47. https://doi.org/10.1093/jnci/djj206
  36. Yang CH. Gastrointestinal disorders associated with non-steroidal anti-inflammatory drugs (NSAIDs). Dongguk Med. 2003 ; 10(2) : 190-9.
  37. Lee AK, Sung SH, Kim YC, Kim SG. Inhibition of lipopolysaccharide-inducible nitric oxide synthase, TNF-$\alpha$ and COX-2 expression by sauchinone effects on I-$\kappa{B}\alpha$ phosphorylation, C/EBP and AP-1 activation. Br J pharmacol. 2003 ; 139 : 11-20. https://doi.org/10.1038/sj.bjp.0705231
  38. Patk HJ, Yoon SW, Yoon JW, Yoon HJ, Ko WS. Inhibitory Effect of Omisodok-eum on Secretion of NO in LPS-stimulated Mouse Peritoneal Macrophages. Korean J Orient Physiol Pathol. 2002 ; 16(2) : 921-7.
  39. Shon GH, Kim SH. Antitumor Activity of Bupleuri Radix and Artemisiae capillaris Herba and Synergistic Effect with Anticancer Drugs. KOMS. 1995 ; 16(2) : 414-32.
  40. Palombella VJ, Rando OJ, Goldberg AL, Maniatis T. The ubiquitinproteasome pathway is required for processing the NF-$\kappa{B}1$ precursor protein and the activation of NF-$\kappa{B}$. Cell. 1996 ; 78(5) : 773-85.