DOI QR코드

DOI QR Code

Incubation Conditions and Physico-Chemical Factors Affecting Aflatoxin B1 Binding of Lactic Acid Bacteria

Aflatoxin B1에 대한 유산균의 결합력에 영향을 미치는 배양조건과 물리화학적 인자

  • Lim, Sung-Mee (Department of Food Nutrition & Science, Tongmyong University) ;
  • Ahn, Dong-Hyun (Department of Food Science and Technology, Pukyong National University)
  • 임성미 (동명대학교 식품영양과학과) ;
  • 안동현 (부경대학교 식품공학과)
  • Received : 2013.08.01
  • Accepted : 2013.08.23
  • Published : 2013.09.30

Abstract

The purpose of this study was to investigate the aflatoxin $B_1$ binding of lactic acid bacteria (LAB) isolated from Korean traditional soybean paste and to evaluate the effect of incubation conditions and physico-chemical factors on the binding ability of LAB to this mutagen. The amount of aflatoxin $B_1$ bound by Enterococcus faecium DJ22, Lactobacillus fermentum DJ35, Lactobacillus rhamnosus DJ42, and Lactobacillus pentosus DJ47 was strain specific with the percent bound ranging from 19.3% to 52.1%. However, Enterococcus faecalis DJ14, Lactobacillus panis DJ29, and Pediococcus halophilus DJ50 strains did not exhibit any of the binding ability to aflatoxin $B_1$. For most strains, the binding ability was significantly affected by the environmental conditions such as the aflatoxin $B_1$ level, incubation time and temperature, and the initial cell count of LAB. The stability of the aflatoxin $B_1$-bacteria complexes was significantly more unstable after washing. In addition, the binding stability between viable and nonviable cells was not statistically significant. Treatment with heating, acidic pH, ${\alpha}$-amylase, protease, lysozyme, or sodium metaperiodate caused a significant (P<0.05) decrease in aflatoxin $B_1$ binding for the tested strains, suggesting that carbohydrates or proteins in the cell walls may be involved in aflatoxin $B_1$ binding ability. Since the aflatoxin $B_1$ binding of LAB was significantly reduced (P<0.05) by the pretreatment of the urea, the binding force observed in this study may have resulted from hydrophobic interaction.

본 연구에서는 숙성된 된장으로부터 분리된 유산균에 의한 aflatoxin $B_1$의 결합 정도를 배양조건에 따라 측정하였고, 물리화학적 처리조건이 aflatoxin $B_1$에 대한 유산균 세포의 결합력에 미치는 영향을 살펴보았다. Enterococcus faecium DJ22, Lactobacillus fermentum DJ35, Lactobacillus rhamnosus DJ42 및 Lactobacillus pentosus DJ47는 19.3-52.1% 정도의 aflatoxin $B_1$ 결합 효과를 나타내어 균종에 따라 결합력에 차이가 있었다. 하지만 E. faecalis DJ14, Lactobacillus panis DJ29 및 Pediococcus halophilus DJ50 균주는 aflatoxin $B_1$에 대한 결합력을 나타내지 않았다. Aflatoxin $B_1$에 대한 유산균의 결합력과 결합속도는 독소의 농도, 반응시간 및 온도와 초기 세포수 등의 배양 조건에 따라 유의한 차이가 있었다. Aflatoxin $B_1$의 결합력은 세척 횟수에 따라 현저하게 감소하였고, 감소율은 살아있는 세포와 가열 처리한 세포에서 비슷하게 나타났다. 가열, 산성 pH, ${\alpha}$-amylase, protease, lysozyme 혹은 sodium metaperiodate의 처리에 의해 결합력이 유의하게 감소된 것으로 보아 주로 세포벽에 존재하는 당이나 단백질에 aflatoxin $B_1$이 결합되며, urea의 처리에 의해 결합력에 낮아지는 것은 이들 사이에는 소수성 결합이 작용하는 것으로 추정되었다.

Keywords

References

  1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Burns, A.I. and Rowland, I.R. 2000. Anti-carcinogenicity of probiotics and prebiotics. Curr. Issues Intest. Microbiol. 1, 13-24.
  3. Cui, Y., Qu, X., Li, H., He, S., Liang, H., Zhang, H., and Ma, Y. 2012. Isolation of halophilic lactic acid bacteria from traditional Chinese fermented soybean paste and assessment of the isolates for industrial potential. Eur. Food Res. Technol. 234, 797-806. https://doi.org/10.1007/s00217-012-1689-8
  4. Eaton, D.L. and Callanger, E.P. 1994. Mechanisms of aflatoxin carcinogenesis. Ann. Rev. Pharmacol. Toxicol. 34, 135-172. https://doi.org/10.1146/annurev.pa.34.040194.001031
  5. El-Nezami, H., Kankaanpaa, P., Salminen, S., and Ahokas, J. 1998a. Physicochemical alterations enhance the ability of diary strains of lactic acid bacteria to remove aflatoxin from contaminated media. J. Food Prot. 61, 466-468. https://doi.org/10.4315/0362-028X-61.4.466
  6. El-Nezami, H., Salminen, S., Ahokas, J., and Kannkaanpaa, P. 1998b. Ability of strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1. Food Chem. Toxicol. 36, 321-326. https://doi.org/10.1016/S0278-6915(97)00160-9
  7. Fearon, E.R. and Vogelstein, B. 1990. A genetic model for colorectal tumorigenesis. Cell 61, 759-767. https://doi.org/10.1016/0092-8674(90)90186-I
  8. Ferguson, L.R. 1994. Antimutagens as cancer chemopreventive agents in the diet. Muta. Res. 307, 395-410. https://doi.org/10.1016/0027-5107(94)90313-1
  9. Galvvano, F., Piva, A., Ritiene, A., and Galvano, G. 2001. Dietary strategies to counteract the effects of mycotoxins: A review. J. Food Prot. 64, 120-131. https://doi.org/10.4315/0362-028X-64.1.120
  10. Gomes, A.M.P. and Malcata, F.X. 1999. Bifidobacterium spp. and Lactobacillus acidophilus: biological, biochemical, technological and therapeutical properties relevant for used as probiotics. Trends Food Sci. Technol. 10, 139-157. https://doi.org/10.1016/S0924-2244(99)00033-3
  11. Gopal, P.K. and Reilly, K.I. 1995. Molecular architecture of the lactococcal cell surface as it relates to important industrial properties. Int. Dairy J. 5, 1095-1111. https://doi.org/10.1016/0958-6946(95)00046-1
  12. Gourama, H. and Bulleraman, L.B. 1997. Anti-aflatoxigenic activity of Lactobacillus casei pseudoplantarum. Int. J. Food Microbiol. 34, 131-143. https://doi.org/10.1016/S0168-1605(96)01176-2
  13. Haskard, C.A., Binnion, C., and Ahokas, J.T. 2000. Factors affecting the sequestration of aflatoxin by Lactobacillus rhamnosus strain GG. Chem. Biol. Interact. 128, 39-49. https://doi.org/10.1016/S0009-2797(00)00186-1
  14. Haskard, C.A., El-Nezami, H.S., Kankaanpaa, P.E., Salminen, S., and Ahokas, J.T. 2001. Surface binding of aflatoxin B1 by lactic acid bacteria. Appl. Environ. Microbiol. 67, 3086-3091. https://doi.org/10.1128/AEM.67.7.3086-3091.2001
  15. Hirayama, K. and Rafter, J. 1999. The role of lactic acid bacteria in colon cancer prevention: mechanistic considerations. Antonie van Leeuwenhoek 76, 391–394.
  16. Karunaratne, A., Wezenberg, E., and Bulleraman, L.B. 1990. Inhibition of mold growth and aflatoxins production by Lactobacillus spp. J. Food Prot. 53, 230-236. https://doi.org/10.4315/0362-028X-53.3.230
  17. Lahtinen, S.J., Haskard, C.A., Ouwehand, A.C., Salminen, S.J., and Ahokas, J.T. 2004. Binding of aflatoxin B1 to cell wall components of Lactobacillus rhamnosus strains GG. Food Addit. Contam. 21, 158-164. https://doi.org/10.1080/02652030310001639521
  18. Lankaputhra, W.E.V. and Shah, N.P. 1998. Antimutagenic properties of probiotic bacteira and of organic acids. Mutat. Res. 397, 169-182. https://doi.org/10.1016/S0027-5107(97)00208-X
  19. Lee, Y.K., El-Nezami, H., Haskard, C.A., Gratz, S., Puong, K.Y., Salminen, S., and Mykkanen, H. 2003. Kinetics of adsorption and desorption of aflatoxin B1 by viable and non-viable bacteria. J. Food Prot. 66, 426-430. https://doi.org/10.4315/0362-028X-66.3.426
  20. Lim, S.M., Lee, G.J., Park, S.M., Ahn, D.H., and Im, D.S. 2006. Characterization of Lactobacillus cellobiosus D37 isolated from soybean paste as a probiotic with anti-cancer and antimicrobial properties. Food Sci. Biotechnol. 15, 792-798.
  21. Lo, P.R., Yu, R.C., Chou, C.C., and Tsai, Y.H. 2002. Antimutagenic activity of several probiotic bifidobacteira against benzo[a]pyrene. J. Biosci. Bioeng. 94, 148-153. https://doi.org/10.1016/S1389-1723(02)80135-9
  22. Morotomi, M. and Mutai, M. 1986. In vitro binding of potent mutagenic pyrolysates to intestinal bacteria. J. Nat. Cancer Inst. 77, 195-201.
  23. Niderkorn, V., Morgavi, D.P., Aboab, B., Lemaire, M., and Boudra, H. 2009. Cell wall component and mycotoxin moieties involved in the binding of fumonisin B1 and B2 by lactic acid bacteria. J. Appl. Microbiol. 106, 977-985. https://doi.org/10.1111/j.1365-2672.2008.04065.x
  24. Orrhage, K., Sillerstrom, E., Gustafsson, J.A., Nord, C.E., and Rafter, J. 1994. Binding of mutagenic heterocyclic amines by intestinal and lactic acid bacteria. Mutat. Res. 311, 239-248. https://doi.org/10.1016/0027-5107(94)90182-1
  25. Peltonen, K., El-Nezami, H., Haskard, C., Ahokas, J., and Salminen, S. 2001. Aflatoxin B1 binding by dairy strains of lactic acid bacteira and bifidobacteria. J. Dairy Sci. 84, 2152-2156. https://doi.org/10.3168/jds.S0022-0302(01)74660-7
  26. Pizzolitto, R.P., Bueno, D.J., Armando, M.R., Cavaglieri, L., Dalcero, A.M., and Salvano, M.A. 2011. Binding of aflatoxin B1 to lactic acid bacteria and Saccharomyces cerevisiae in vitro: A useful model to determine the most efficient microorganism, Aflatoxins-Biochemistry and Molecular Biology. In Guevara-Gonzalez, R.G. (eds.) InTech China, pp. 323-346.
  27. Sreekumar, O. and Hosono, A. 1998. The antimutagenic properties of a polysaccharide produced by Bifidobacterium longum and its cultured milk against some heterocyclic amines. Can. J. Microbiol. 44, 1029-1036. https://doi.org/10.1139/cjm-44-11-1029
  28. Topcu, A., Bulat, T., Wishah, R., and Boyac, I.H. 2010. Detoxification of aflatoxin B1 and patulin by Enterococcus faecium strains. Int. J. Food Microbiol. 139, 202-205. https://doi.org/10.1016/j.ijfoodmicro.2010.03.006
  29. Wogan, G.N. 1999. Aflatoxin as a human carcinogen. Hepatology 30, 573–575. https://doi.org/10.1002/hep.510300231
  30. Wollowski, I., Ji, S.T., Bakalinski, A.T., Neudecker, C., and Pool-Zobel, B.L. 1999. Bacteria used for the production of yogurt inactivate carcinogens and prevent DNA damage in the colon of rats. J. Nutr. 129, 77-82.
  31. Yoo, S.K., Cho, W.H., Kang, S.M., and Lee, S.H. 1999. Isolation and identification of microorganisms in Korean traditional soybean paste and soybean sauce. Kor. J. Appl. Microbiol. Biotechnol. 27, 113-117.