DOI QR코드

DOI QR Code

Glutathione Depletion by L-Buthionine-S,R-Sulfoximine Induces Apoptosis of Cardiomyocytes through Activation of PKC-δ

  • Kim, Young-Ae (Department of Pathophysiology, College of Pharmacy) ;
  • Kim, Mi-Young (Department of Pathophysiology, College of Pharmacy) ;
  • Jung, Yi-Sook (Department of Pathophysiology, College of Pharmacy)
  • Received : 2013.09.02
  • Accepted : 2013.09.23
  • Published : 2013.09.30

Abstract

In the present study, we investigated the effect of intracellular glutathione (GSH) depletion in heart-derived H9c2 cells and its mechanism. L-buthionine-S,R-sulfoximine (BSO) induced the depletion of cellular GSH, and BSO-induced reactive oxygen species (ROS) production was inhibited by glutathione monoethyl ester (GME). Additionally, GME inhibited BSO-induced caspase-3 activation, annexin V-positive cells, and annexin V-negative/propidium iodide (PI)-positive cells. Treatment with rottlerin completely blocked BSO-induced cell death and ROS generation. BSO-induced GSH depletion caused a translocation of PKC-${\delta}$ from the cytosol to the membrane fraction, which was inhibited by treatment with GME. From these results, it is suggested that BSO-induced depletion of cellular GSH causes an activation of PKC-${\delta}$ and, subsequently, generation of ROS, thereby inducing H9c2 cell death.

Keywords

References

  1. Ahmed, Z. and Tang, W. H. (2012) Pharmacologic strategies to target oxidative stress in heart failure. Curr. Heart Fail. Rep. 9, 14-22. https://doi.org/10.1007/s11897-011-0081-5
  2. Armstrong, J. S., Steinauer, K. K., Hornung, B., Irish, J. M., Lecane, P., Birrell, G. W., Peehl, D. M. and Knox, S. J. (2002) Role of glutathione depletion and reactive oxygen species generation in apoptotic signaling in a human B lymphoma cell line. Cell Death Differ. 9, 252-263. https://doi.org/10.1038/sj.cdd.4400959
  3. Belch, J. J., Bridges, A. B., Scott, N. and Chopra, M. (1991) Oxygen free radicals and congestive heart failure. Br. Heart J. 65, 245-248. https://doi.org/10.1136/hrt.65.5.245
  4. Blaustein, A., Deneke, S. M., Stolz, R. I., Baxter, D., Healey, N. and Fanburg, B. L. (1989) Myocardial glutathione depletion impairs recovery after short periods of ischemia. Circulation 80, 1449-1457. https://doi.org/10.1161/01.CIR.80.5.1449
  5. Brewer, A. C., Murray, T. V., Arno, M., Zhang, M., Anilkumar, N. P., Mann, G. E. and Shah, A. M. (2011) Nox4 regulates Nrf2 and glutathione redox in cardiomyocytes in vivo. Free Radic. Biol. Med. 51, 205-215. https://doi.org/10.1016/j.freeradbiomed.2011.04.022
  6. Chang, H. Y. and Yang, X. (2000) Proteases for cell suicide: functions and regulation of caspases. Microbiol. Mol. Biol. Rev. 64, 821-846. https://doi.org/10.1128/MMBR.64.4.821-846.2000
  7. Chatham, J. C., Seymour, A. L., Harmsen, E. and Radda, G. K. (1988) Depletion of myocardial glutathione: its effects on heart function and metabolism during ischaemia and reperfusion. Cardiovasc. Res. 22, 833-839. https://doi.org/10.1093/cvr/22.11.833
  8. Chen, K. and Keaney, J. F. Jr. (2012) Evolving concepts of oxidative stress and reactive oxygen species in cardiovascular disease. Curr. Atheroscler. Rep. 14, 476-483. https://doi.org/10.1007/s11883-012-0266-8
  9. Cieslak, D. and Lazou, A. (2007) Regulation of BAD protein by PKA, PKCdelta and phosphatase in adult rat cardiac myocytes subjected to oxidative stress. Mol. Cells 24, 24-231.
  10. Damy, T., Kirsch, M., Khouzami, L., Caramelle, P., Le Corvoisier, P., Roudot-Thoraval, F., Dubois-Rande, J. L., Hittinger, L., Pavoine, C. and Pecker, F. (2009) Glutathione deficiency in cardiac patients is related to the functional status and structural cardiac abnormalities. PLoS One 4, e4871. https://doi.org/10.1371/journal.pone.0004871
  11. Dhalla, N. S., Temsah, R. M. and Netticadan, T. (2000) Role of oxidative stress in cardiovascular diseases. J. Hypertens. 18, 655-673. https://doi.org/10.1097/00004872-200018060-00002
  12. Doble, B. W., Ping, P. and Kardami, E. (2000) The ${\varepsilon}$ subtype of protein kinase c is required for cardiomyocyte connexin-43 phosphorylation. Circ. Res. 86, 293-301. https://doi.org/10.1161/01.RES.86.3.293
  13. Ghosh, S., Pulinilkunnil, T., Yuen, G., Kewalramani, G., An, D., Qi, D., Abrahani, A. and Rodrigues, B. (2005) Cardiomyocyte apoptosis induced by short-term diabetes requires mitochondrial GSH depletion. Am. J. Physiol. Heart Circ. Physiol. 289, H768-H776. https://doi.org/10.1152/ajpheart.00038.2005
  14. Gottlieb, E., Armour, S. M., Harris, M. H. and Thompson, C. B. (2003) Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ. 10, 709-717. https://doi.org/10.1038/sj.cdd.4401231
  15. Gross, A., McDonnell, J. M. and Korsmeyer, S. J. (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13, 1899-1911. https://doi.org/10.1101/gad.13.15.1899
  16. Kim, M. J., Moon, C. H., Kim, M. Y., Kim, M. H., Lee, S. H., Baik, E. J. and Jung, Y. S. (2004) Role of PKC-delta during hypoxia in heart-derived H9c2 cells. Jpn. J. Physiol. 54, 405-414. https://doi.org/10.2170/jjphysiol.54.405
  17. Korystov, Y. N., Dobrovinskaya, O. R., Shaposhnikova, V. V. and Eidus, L. K. (1996) Role of arachidonic acid metabolism in thymocyte apoptosis after irradiation. FEBS Lett. 388, 238-241. https://doi.org/10.1016/0014-5793(96)00538-8
  18. Kyto, V., Lapatto, R., Lakkisto, P., Saraste, A., Voipio-Pulkki, L. M., Vuorinen, T. and Pulkki, K. (2004) Glutathione depletion and cardiomyocyte apoptosis in viral myocarditis. Eur. J. Clin. Invest. 34, 167-175. https://doi.org/10.1111/j.1365-2362.2004.01313.x
  19. Lai, H. C., Yeh, Y. C., Wang, L. C., Ting, C. T., Lee, W. L., Lee, H. W., Wang, K. Y., Wu, A., Su, C. S. and Liu, T. J. (2011) Propofol ameliorates doxofubicin-induced oxidative stress and cellular apoptosis in rat cardiomyocytes. Toxicol. Appl. Pharmacol. 257, 437-448. https://doi.org/10.1016/j.taap.2011.10.001
  20. Lee, B. K. and Jung, Y. S. (2012) The $Na^+/H^+$ exchanger-1 inhibitor cariporide prevents glutamate-induced necrotic neuronal death by inhibiting mitochondrial $Ca^{2+}$ overload. J. Neurosci. Res. 90, 860-869. https://doi.org/10.1002/jnr.22818
  21. Lee, B. K., Lee, S. K., Yi, K. Y., Yoo, S. E. and Jung, Y. S. (2011) KR-33028, a novel $Na^+/H^+$ exchanger-1 inhibitor, attenuates glutamate-induced apoptotic cell death through maintaining mitochondrial function. Biomol. Ther. 19, 445-450. https://doi.org/10.4062/biomolther.2011.19.4.445
  22. Lee, N. Y., Rieckmann, P. and Kang, Y. S. (2012) The changes of P-glycoprotein activity by interferon-${\gamma}$ and tumor necrosis factor-${\alpha}$ in primary and immortalized human brain microvascular endothelial cells. Biomol. Ther. 20, 293-298. https://doi.org/10.4062/biomolther.2012.20.3.293
  23. Logue, S. E. and Martin, S. J. (2008) Caspase activation cascades in apoptosis. Biochem. Soc. Trans. 36, 1-9. https://doi.org/10.1042/BST0360001
  24. Maack, C., Kartes, T., Kilter, H., Schafers, H. J., Nickenig, G., Bohm, M. and Laufs, U. (2003) Oxygen free radical release in human failing myocardium is associated with increased activity of rac1-GTPase and represents a target for statin treatment. Circulation 108, 1567-1574. https://doi.org/10.1161/01.CIR.0000091084.46500.BB
  25. Mallat, Z., Philip, I., Lebret, M., Chatel, D., Maclouf, J. and Tedgui, A. (1998) Elevated levels of 8-iso-prostaglandin F2alpha in pericardial fluid of patients with heart failure: a potential role for in vivo oxidant stress in ventricular dilatation and progression to heart failure. Circulation 97, 1536-1539. https://doi.org/10.1161/01.CIR.97.16.1536
  26. Meister, A. and Anderson, M. E. (1983) Glutathione. Annu. Rev. Biochem. 52, 711-760. https://doi.org/10.1146/annurev.bi.52.070183.003431
  27. Molyneux, C. A., Glyn, M. C. and Ward, B. J. (2002) Oxidative stress and cardiac microvascular structure in ischemia and reperfusion: the protective effect of antioxidant vitamins. Microvasc. Res. 64, 265-277. https://doi.org/10.1006/mvre.2002.2419
  28. Narasimhan, M., Mahimainathan, L., Rathinam, M. L., Riar, A. K. and Henderson, G. I. (2011) Overexpression of Nrf2 protects cerebral cortical neurons from ethanol-induced apoptotic death. Mol. Pharmacol. 80, 988-999. https://doi.org/10.1124/mol.111.073262
  29. O'Neill, A. J., O'Neill, S., Hegarty, N. J., Coffey, R. N., Gibbons, N., Brady, H., Fitzpatrick, J. M. and Watson, R. W. (2000) Glutathione depletion-induced neutrophil apoptosis is caspase 3 dependent. Shock 14, 605-609. https://doi.org/10.1097/00024382-200014060-00006
  30. Rees, R. S., Smith, D. J., Adamson, B., Im, M. and Hinshaw, D. (1995) Oxidant stress: the role of the glutathione redox cycle in skin preconditioning. J. Surg. Res. 58, 395-400. https://doi.org/10.1006/jsre.1995.1061
  31. Sevin, G., Ozsarlak-Sozer, G., Keles, D., Gokce, G., Reel, B., Ozgur, H. H., Oktay, G. and Kerry, Z. (2013) Taurine inhibits increased MMP-2 expression in a model of oxidative stress induced by glutathione depletion in rabbit heart. Eur. J. Pharmacol. 706, 98-106. https://doi.org/10.1016/j.ejphar.2013.02.052
  32. Torres, V. E., Bengal, R. J., Litwiller, R. D. and Wilson, D. M. (1997) Aggravation of polycystic kidney disease in Han:SPRD rats by buthionine sulfoximine. J. Am. Soc. Nephrol. 8, 1283-1291.
  33. van den Dobbelsteen, D. J., Nobel, C. S., Schlegel, J., Cotgreave, I. A., Orrenius, S. and Slater, A. F. (1996) Rapid and specific efflux of reduced glutathione during apoptosis induced by anti-Fas/APO-1 antibody. J. Biol. Chem. 271, 15420-15427. https://doi.org/10.1074/jbc.271.26.15420
  34. Yang, H., Lee, B. K., Kook, K. H., Jung, Y. S. and Ahn, J. (2012) Protective effect of grape seed extract against oxidative stress-induced cell death in a staurosporine-differentiated retinal ganglion cell line. Curr. Eye Res. 37, 339-344. https://doi.org/10.3109/02713683.2011.645106

Cited by

  1. Glutathione Depletion Induces Spermatogonial Cell Autophagy vol.116, pp.10, 2015, https://doi.org/10.1002/jcb.25178
  2. Implication of protein kinase C of the left intermediate medial mesopallium in memory impairments induced by early prenatal morphine exposure in one-day old chicks vol.795, 2017, https://doi.org/10.1016/j.ejphar.2016.12.011
  3. Flightless I (Drosophila) homolog facilitates chromatin accessibility of the estrogen receptor α target genes in MCF-7 breast cancer cells vol.446, pp.2, 2014, https://doi.org/10.1016/j.bbrc.2014.03.011
  4. Mitochondrial Reactive Oxygen Species at the Heart of the Matter vol.116, pp.11, 2015, https://doi.org/10.1161/CIRCRESAHA.116.305432
  5. Acid sphingomyelinase promotes mitochondrial dysfunction due to glutamate-induced regulated necrosis vol.59, pp.2, 2017, https://doi.org/10.1194/jlr.M080374
  6. In vitro identification of mitochondrial oxidative stress production by time-resolved fluorescence imaging of glioma cells vol.1865, pp.4, 2013, https://doi.org/10.1016/j.bbamcr.2018.01.012
  7. Tumor Homing Reactive Oxygen Species Nanoparticle for Enhanced Cancer Therapy vol.11, pp.27, 2013, https://doi.org/10.1021/acsami.9b07483
  8. Therapeutic Potential of Vital Transcription Factors in Alzheimer’s and Parkinson’s Disease With Particular Emphasis on Transcription Factor EB Mediated Autophagy vol.15, pp.None, 2021, https://doi.org/10.3389/fnins.2021.777347