DOI QR코드

DOI QR Code

Resveratrol Inhibits Nitric Oxide-Induced Apoptosis via the NF-Kappa B Pathway in Rabbit Articular Chondrocytes

  • Eo, Seong-Hui (Department of Biological Sciences, College of Natural Sciences, Kongju National University) ;
  • Cho, Hongsik (University of Tennessee Health Science Center) ;
  • Kim, Song-Ja (Department of Biological Sciences, College of Natural Sciences, Kongju National University)
  • Received : 2013.04.16
  • Accepted : 2013.07.26
  • Published : 2013.09.30

Abstract

Resveratrol (trans-3,4'-trihydroxystillbene), a naturally occurring polyphenolic antioxidant found in grapes and red wine, elicits diverse biochemical responses and demonstrates anti-aging, anti-inflammatory, and anti-proliferative effects in several cell types. Previously, resveratrol was shown to regulate differentiation and inflammation in rabbit articular chondrocytes, while the direct production of nitric oxide (NO) in these cells by treatment with the NO donor sodium nitroprusside (SNP) led to apoptosis. In this study, the effect of resveratrol on NO-induced apoptosis in rabbit articular chondrocytes was investigated. Resveratrol dramatically reduced NO-induced apoptosis in chondrocytes, as determined by phase-contrast microscopy, the MTT assay, FACS analysis, and DAPI staining. Treatment with resveratrol inhibited the SNP-induced expression of p53 and p21 and reduced the expression of procaspase-3 in chondrocytes, as detected by western blot analysis. SNP-induced degradation of I-kappa B alpha ($I{\kappa}B-{\alpha}$) was rescued by resveratrol treatment, and the SN50 peptide-mediated inhibition of NF-kappa B (NF-${\kappa}B$) activity potently blocked SNP-induced caspase-3 activation and apoptosis. Our results suggest that resveratrol inhibits NO-induced apoptosis through the NF-${\kappa}B$ pathway in articular chondrocytes.

Keywords

References

  1. Abramson, S. B., Attur, M., Amin, A. R. and Clancy, R. (2001) Nitric oxide and inflammatory mediators in the perpetuation of osteoarthritis. Curr. Rheumatol. Rep. 3, 535-541. https://doi.org/10.1007/s11926-001-0069-3
  2. Amin, A. R. and Abramson, S. B. (1998) The role of nitric oxide in articular cartilage breakdown in osteoarthritis. Curr. Opin. Rheumatol. 10, 263-268. https://doi.org/10.1097/00002281-199805000-00018
  3. Bai, Y., Mao, Q. Q., Qin, J., Zheng, X. Y., Wang, Y. B., Yang, K., Shen, H. F. and Xie, L. P. (2010) Resveratrol induces apoptosis and cell cycle arrest of human T24 bladder cancer cells in vitro and inhibits tumor growth in vivo. Cancer. Sci. 101, 488-493. https://doi.org/10.1111/j.1349-7006.2009.01415.x
  4. Bentz, M., Zaouter, C., Shi, Q., Fahmi, H., Moldovan, F., Fernandes, J. C. and Benderdour, M. (2012) Inhibition of inducible nitric oxide synthase prevents lipid peroxidation in osteoarthritic chondrocytes. J. Cell. Biochem. 113, 2256-2267. https://doi.org/10.1002/jcb.24096
  5. Cau, S. B., Carneiro, F. S. and Tostes, R. C. (2012) Differential modulation of nitric oxide synthases in aging: therapeutic opportunities. Front. Physiol. 3, 218.
  6. Choy, E. H. and Panayi, G. S. (2001) Cytokine pathways and joint inflammation in rheumatoid arthritis. N. Engl. J. Med. 344, 907-916. https://doi.org/10.1056/NEJM200103223441207
  7. Csaki, C., Keshishzadeh, N., Fischer, K. and Shakibaei, M. (2008) Regulation of inflammation signalling by resveratrol in human chondrocytes in vitro. Biochem. Pharmacol. 75, 677-687. https://doi.org/10.1016/j.bcp.2007.09.014
  8. Elmali, N., Baysal, O., Harma, A., Esenkaya, I. and Mizrak, B. (2007) Effects of resveratrol in inflammatory arthritis. Inflammation 30, 1-6. https://doi.org/10.1007/s10753-006-9012-0
  9. Elmali, N., Esenkaya, I., Harma, A., Ertem, K., Turkoz, Y. and Mizrak, B. (2005) Effect of resveratrol in experimental osteoarthritis in rabbits. Inflamm. Res. 54, 158-162. https://doi.org/10.1007/s00011-004-1341-6
  10. Fontecave, M., Lepoivre, M., Elleingand, E., Gerez, C. and Guittet, O. (1998) Resveratrol, a remarkable inhibitor of ribonucleotide reductase. FEBS Lett. 421, 277-279. https://doi.org/10.1016/S0014-5793(97)01572-X
  11. Gu, Z., Kaul, M., Yan, B., Kridel, S. J., Cui, J., Strongin, A., Smith, J. W., Liddington, R. C. and Lipton, S. A. (2002) S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297, 1186-1190. https://doi.org/10.1126/science.1073634
  12. Gu, Z., Nakamura, T. and Lipton, S. A. (2010) Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases. Mol. Neurobiol. 41, 55-72. https://doi.org/10.1007/s12035-010-8113-9
  13. Im, H. J., Li, X., Chen, D., Yan, D., Kim, J., Ellman, M. B., Stein, G. S., Cole, B., Kc, R., Cs-Szabo, G. and van Wijnen, A. J. (2012) Biological effects of the plant-derived polyphenol resveratrol in human articular cartilage and chondrosarcoma cells. J. Cell. Physiol. 227, 3488-3497. https://doi.org/10.1002/jcp.24049
  14. Kim, S. J. and Chun, J. S. (2003) Protein kinase C alpha and zeta regulate nitric oxide-induced NF-kappa B activation that mediates cyclooxygenase-2 expression and apoptosis but not dedifferentiation in articular chondrocytes. Biochem. Biophys. Res. Commun. 303, 206-211. https://doi.org/10.1016/S0006-291X(03)00305-X
  15. Kim, S. J., Hwang, S. G., Kim, I. C. and Chun, J. S. (2003) Actin cytoskeletal architecture regulates nitric oxide-induced apoptosis, dedifferentiation, and cyclooxygenase-2 expression in articular chondrocytes via mitogen-activated protein kinase and protein kinase C pathways. J. Biol. Chem. 278, 42448-42456. https://doi.org/10.1074/jbc.M304887200
  16. Kim, S. J., Hwang, S. G., Shin, D. Y., Kang, S. S. and Chun, J. S. (2002a) p38 kinase regulates nitric oxide-induced apoptosis of articular chondrocytes by accumulating p53 via NFkappa B-dependent transcription and stabilization by serine 15 phosphorylation. J. Biol. Chem. 277, 33501-33508. https://doi.org/10.1074/jbc.M202862200
  17. Kim, S. J., Ju, J. W., Oh, C. D., Yoon, Y. M., Song, W. K., Kim, J. H., Yoo, Y. J., Bang, O. S., Kang, S. S. and Chun, J. S. (2002b) ERK-1/2 and p38 kinase oppositely regulate nitric oxide-induced apoptosis of chondrocytes in association with p53, caspase-3, and differentiation status. J. Biol. Chem. 277, 1332-1339. https://doi.org/10.1074/jbc.M107231200
  18. Kim, S. J., Kim, H. G., Oh, C. D., Hwang, S. G., Song, W. K., Yoo, Y. J., Kang, S. S. and Chun, J. S. (2002c) p38 kinase-dependent and -independent Inhibition of protein kinase C zeta and -alpha regulates nitric oxide-induced apoptosis and dedifferentiation of articular chondrocytes. J. Biol. Chem. 277, 30375-30381. https://doi.org/10.1074/jbc.M205193200
  19. Lei, M., Wang, J. G., Xiao, D. M., Fan, M., Wang, D. P., Xiong, J. Y., Chen, Y., Ding, Y. and Liu, S. L. (2012) Resveratrol inhibits interleukin 1beta-mediated inducible nitric oxide synthase expression in articular chondrocytes by activating SIRT1 and thereby suppressing nuclear factor-kappaB activity. Eur. J. Pharmacol. 674, 73-79. https://doi.org/10.1016/j.ejphar.2011.10.015
  20. Li, X., Du, M., Liu, X., Wu, M., Ye, H., Lin, J., Chen, W. and Wu, G. (2010) Millimeter wave treatment inhibits NO-induced apoptosis of chondrocytes through the p38MAPK pathway. Int. J. Mol. Med. 25, 393-399.
  21. Lin, W. C., Chuang, Y. C., Chang, Y. S., Lai, M. D., Teng, Y. N., Su, I. J., Wang, C. C., Lee, K. H. and Hung, J. H. (2012) Endoplasmic reticulum stress stimulates p53 expression through NF-kappaB activation. PLoS ONE. 7, e39120. https://doi.org/10.1371/journal.pone.0039120
  22. Marques, F. Z., Markus, M. A. and Morris, B. J. (2009) Resveratrol: cellular actions of a potent natural chemical that confers a diversity of health benefits. Int. J. Biochem. Cell Biol. 41, 2125-2128. https://doi.org/10.1016/j.biocel.2009.06.003
  23. Mukherjee, S., Dudley, J. I. and Das, D. K. (2010) Dose-dependency of resveratrol in providing health benefits. Dose Response 8, 478-500. https://doi.org/10.2203/dose-response.09-015.Mukherjee
  24. Qureshi, A. A., Guan, X. Q., Reis, J. C., Papasian, C. J., Jabre, S., Morrison, D. C. and Qureshi, N. (2012) Inhibition of nitric oxide and inflammatory cytokines in LPS-stimulated murine macrophages by resveratrol, a potent proteasome inhibitor. Lipids Health Dis. 11, 76. https://doi.org/10.1186/1476-511X-11-76
  25. Ryan, K. M., Ernst, M. K., Rice, N. R. and Vousden, K. H. (2000) Role of NF-kappaB in p53-mediated programmed cell death. Nature 404, 892-897. https://doi.org/10.1038/35009130
  26. Sandell, L. J. and Aigner, T. (2001) Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res. 3, 107-113. https://doi.org/10.1186/ar148
  27. Shakibaei, M., Csaki, C., Nebrich, S. and Mobasheri, A. (2008) Resveratrol suppresses interleukin-1beta-induced inflammatory signaling and apoptosis in human articular chondrocytes: potential for use as a novel nutraceutical for the treatment of osteoarthritis. Biochem. Pharmacol. 76, 1426-1439. https://doi.org/10.1016/j.bcp.2008.05.029
  28. Shakibaei, M., Harikumar, K. B. and Aggarwal, B. B. (2009) Resveratrol addiction: to die or not to die. Mol. Nutr. Food Res. 53, 115-128. https://doi.org/10.1002/mnfr.200800148
  29. Shakibaei, M., John, T., Seifarth, C. and Mobasheri, A. (2007) Resveratrol inhibits IL-1 beta-induced stimulation of caspase-3 and cleavage of PARP in human articular chondrocytes in vitro. Ann. N.Y. Acad. Sci. 1095, 554-563. https://doi.org/10.1196/annals.1397.060
  30. Solursh, M. (1989) Differentiation of cartilage and bone. Curr. Opin. Cell Biol. 1, 989-994. https://doi.org/10.1016/0955-0674(89)90070-7
  31. Squadrito, G. L. and Pryor, W. A. (1998) Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic. Biol. Med. 25, 392-403. https://doi.org/10.1016/S0891-5849(98)00095-1
  32. Tang, L. L., Gao, J. S., Chen, X. R. and Xie, X. (2006) Inhibitory effect of resveratrol on the proliferation of synoviocytes in rheumatoid arthritis and its mechanism in vitro. Zhong Nan Da Xue Xue Bao Yi Xue Ban 31, 528-533.
  33. Yoon, E. K., Lee, W. K., Lee, J. H., Yu, S. M., Hwang, S. G. and Kim, S. J. (2007) ERK-1/-2 and p38 kinase oppositely regulate 15-deoxy-delta(12,14)-prostaglandinJ(2)-Induced PPAR-gamma activation that mediates dedifferentiation but not cyclooxygenase-2 expression in articular chondrocytes. J. Korean Med. Sci. 22, 1015-1021. https://doi.org/10.3346/jkms.2007.22.6.1015
  34. Yoon, Y. M., Kim, S. J., Oh, C. D., Ju, J. W., Song, W. K., Yoo, Y. J., Huh, T. L. and Chun, J. S. (2002) Maintenance of differentiated phenotype of articular chondrocytes by protein kinase C and extracellular signal-regulated protein kinase. J. Biol. Chem. 277, 8412-8420. https://doi.org/10.1074/jbc.M110608200
  35. Yu, W., Fu, Y. C. and Wang, W. (2012) Cellular and molecular effects of resveratrol in health and disease. J. Cell. Biochem. 113, 752-759. https://doi.org/10.1002/jcb.23431

Cited by

  1. Resveratrol alleviates oxidative damage in enteric neurons and associated gastrointestinal dysfunction caused by chemotherapeutic agent oxaliplatin 2017, https://doi.org/10.1016/j.maturitas.2017.05.010
  2. Scutellarein Reduces Inflammatory Responses by Inhibiting Src Kinase Activity vol.19, pp.5, 2015, https://doi.org/10.4196/kjpp.2015.19.5.441
  3. Effects of mimic of manganese superoxide dismutase on 2,4,6-trinitrobenzene sulfonic acid-induced colitis in rats vol.39, pp.9, 2016, https://doi.org/10.1007/s12272-016-0811-z
  4. Oral Administration of Resveratrol Alleviates Osteoarthritis Pathology in C57BL/6J Mice Model Induced by a High-Fat Diet vol.2017, 2017, https://doi.org/10.1155/2017/7659023
  5. Biogenêse mitocondrial e exercício físico: hipótese do acoplamento elétrico-transcripcional vol.29, pp.4, 2015, https://doi.org/10.1590/1807-55092015000400687
  6. Significance of Epigenetic Landscape in Cartilage Regeneration from the Cartilage Development and Pathology Perspective vol.23, pp.11, 2014, https://doi.org/10.1089/scd.2014.0002
  7. Syk/Src-targeted anti-inflammatory activity of Codariocalyx motorius ethanolic extract vol.155, pp.1, 2014, https://doi.org/10.1016/j.jep.2014.05.013
  8. Resveratrol inhibits the IL-1β-induced expression of MMP-13 and IL-6 in human articular chondrocytes via TLR4/MyD88-dependent and -independent signaling cascades vol.39, pp.3, 2017, https://doi.org/10.3892/ijmm.2017.2885
  9. In vitro and in vivo anti-inflammatory activity of Phyllanthus acidus methanolic extract vol.168, 2015, https://doi.org/10.1016/j.jep.2015.03.043
  10. Protective Effect of Resveratrol against IL-1β-Induced Inflammatory Response on Human Osteoarthritic Chondrocytes Partly via the TLR4/MyD88/NF-κB Signaling Pathway: An “in Vitro Study” vol.15, pp.4, 2014, https://doi.org/10.3390/ijms15046925
  11. Ascorbic acid provides protection for human chondrocytes against oxidative stress vol.12, pp.5, 2015, https://doi.org/10.3892/mmr.2015.4231
  12. Resveratrol, a natural antioxidant, protects monosodium iodoacetate-induced osteoarthritic pain in rats vol.83, 2016, https://doi.org/10.1016/j.biopha.2016.06.050
  13. Resveratrol protects rabbit articular chondrocyte against sodium nitroprusside-induced apoptosis via scavenging ROS vol.19, pp.9, 2014, https://doi.org/10.1007/s10495-014-1012-1
  14. Dominant roles of Fenton reaction in sodium nitroprusside-induced chondrocyte apoptosis vol.94, 2016, https://doi.org/10.1016/j.freeradbiomed.2016.02.026
  15. Immunotoxicological Effects of Aripiprazole:In vivoandIn vitroStudies vol.19, pp.4, 2015, https://doi.org/10.4196/kjpp.2015.19.4.365
  16. Resveratrol protects against sodium nitroprusside induced nucleus pulposus cell apoptosis by scavenging ROS vol.41, pp.5, 2013, https://doi.org/10.3892/ijmm.2018.3461
  17. Pathophysiological Role of S-Nitrosylation and Transnitrosylation Depending on S-Nitrosoglutathione Levels Regulated by S-Nitrosoglutathione Reductase vol.26, pp.6, 2013, https://doi.org/10.4062/biomolther.2018.179
  18. Resveratrol inhibits the development of obesity-related osteoarthritis via the TLR4 and PI3K/Akt signaling pathways vol.60, pp.6, 2013, https://doi.org/10.1080/03008207.2019.1601187
  19. Resveratrol Exerts Anti-Osteoarthritic Effect by Inhibiting TLR4/NF-κB Signaling Pathway via the TLR4/Akt/FoxO1 Axis in IL-1β-Stimulated SW1353 Cells vol.14, pp.None, 2013, https://doi.org/10.2147/dddt.s244059