DOI QR코드

DOI QR Code

Production and Characterization of Ethanol- and Protease-Tolerant and Xylooligosaccharides-Producing Endoxylanase from Humicola sp. Ly01

  • Zhou, Junpei (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University) ;
  • Wu, Qian (College of Life Sciences, Yunnan Normal University) ;
  • Zhang, Rui (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University) ;
  • Yang, Yuying (College of Life Sciences, Yunnan Normal University) ;
  • Tang, Xianghua (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University) ;
  • Li, Junjun (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University) ;
  • Ding, Junmei (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University) ;
  • Dong, Yanyan (Medical School, Liaocheng Vocational and Technical College) ;
  • Huang, Zunxi (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University)
  • Received : 2012.11.02
  • Accepted : 2013.01.26
  • Published : 2013.06.28

Abstract

This paper reports the production and characterization of crude xylanase from the newly isolated Humicola sp. Ly01. The highest (41.8 U/ml) production of the crude xylanase was obtained under the optimized conditions (w/v): 0.5% wheat bran, 0.2% $KH_2PO_4$, and 0.5% peptone; initial pH 7.0; incubation time 72 h; $30^{\circ}C$; and 150 rpm. A considerable amount of the crude xylanase was induced using hulless barley bran or soybean meal as the carbon source, but a small amount of the enzyme was produced when supplementary urea was used as the nitrogen source to wheat bran. The crude xylanase showed apparent optimal cellulase-free xylanase activity at $60^{\circ}C$ and pH 6.0, more than 71.8% of the maximum xylanase activity in 3.0-30.0% (v/v) ethanol and more than 82.3% of the initial xylanase activity after incubation in 3.0-30.0% (v/v) ethanol at $30^{\circ}C$ for 2 h. The crude xylanase was moderately resistant to both acid and neutral protease digestion, and released 7.9 and 10.9 ${\mu}mol/ml$ reducing sugar from xylan in the simulated gastric and intestinal fluids, respectively. The xylooligosaccharides were the main products of the hydrolysis of xylan by the crude xylanase. These properties suggested the potential of the crude enzyme for being applied in the animal feed industry, xylooligosaccharides production, and high-alcohol conditions such as ethanol production and brewing.

Keywords

References

  1. Ahmed, S., S. Riaz, and A. Jamil. 2009. Molecular cloning of fungal xylanases: An overview. Appl. Microbiol. Biotechnol. 84: 19-35. https://doi.org/10.1007/s00253-009-2079-4
  2. Akpinar, O. and S. Bostanci. 2009. Xylooligosaccharide production from lignocellulosic wastes with Trichoderma longibrachiatum xylanase. J. Food Agric. Environ. 7: 70-74.
  3. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Cai, H. Y., P. J. Shi, Y. G. Bai, H. Q. Huang, T. Z. Yuan, P. L. Yang, et al. 2011. A novel thermoacidophilic family 10 xylanase from Penicillium pinophilum C1. Process Biochem. 46: 2341-2346. https://doi.org/10.1016/j.procbio.2011.09.018
  5. Cheng, F., J. Sheng, R. Dong, Y. Men, L. Gan, and L. Shen. 2012. Novel xylanase from a Holstein cattle rumen metagenomic library and its application in xylooligosaccharide and ferulic acid production from wheat straw. J. Agric. Food Chem. 60: 12516-12524. https://doi.org/10.1021/jf302337w
  6. Collins, T., C. Gerday, and G. Feller. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23. https://doi.org/10.1016/j.femsre.2004.06.005
  7. Dhiman, S. S., J. Sharma, and B. Battan. 2008. Pretreatment processing of fabrics by alkalothermophilic xylanase from Bacillus stearothermophilus SDX. Enzyme Microb. Technol. 43: 262-269. https://doi.org/10.1016/j.enzmictec.2008.03.016
  8. Fang, H. Y., S. M. Chang, M. C. Hsieh, and T. J. Fang. 2007. Production, optimization growth conditions and properties of the xylanase from Aspergillus carneus M34. J. Mol. Catal. B Enzym. 49: 36-42. https://doi.org/10.1016/j.molcatb.2007.08.002
  9. Gaffney, M., S. Doyle, and R. Murphy. 2009. Optimization of xylanase production by Thermomyces lanuginosus in solid state fermentation. Biosci. Biotechnol. Biochem. 73: 2640-2644. https://doi.org/10.1271/bbb.90493
  10. Guo, B., X. L. Chen, C. Y. Sun, B. C. Zhou, and Y. Z. Zhang. 2009. Gene cloning, expression and characterization of a new cold-active and salt-tolerant endo-$\beta$-1,4-xylanase from marine Glaciecola mesophila KMM 241. Appl. Microbiol. Biotechnol. 84: 1107-1115. https://doi.org/10.1007/s00253-009-2056-y
  11. Jeffries, T. W. and Y. S. Jin. 2004. Metabolic engineering for improved fermentation of pentoses by yeasts. Appl. Microbiol. Biotechnol. 63: 495-509. https://doi.org/10.1007/s00253-003-1450-0
  12. Kamra, P. and T. Satyanarayana. 2004. Xylanase production by the thermophilic mold Humicola lanuginosa in solid-state fermentation. Appl. Biochem. Biotechnol. 119: 145-157. https://doi.org/10.1385/ABAB:119:2:145
  13. Kim, D. Y., M. K. Han, H. W. Oh, K. S. Bae, T. S. Jeong, S. U. Kim, et al. 2010. Novel intracellular GH10 xylanase from Cohnella laeviribosi HY-21: Biocatalytic properties and alterations of substrate specificities by site-directed mutagenesis of Trp residues. Bioresource Technol. 101: 8814-8821. https://doi.org/10.1016/j.biortech.2010.06.023
  14. Lafond, M., A. Tauzin, V. Desseaux, E. Bonnin, E. H. Ajandouz, and T. Giardina. 2011. GH10 xylanase D from Penicillium funiculosum: Biochemical studies and xylooligosaccharide production. Microb. Cell Fact. 10: 20. https://doi.org/10.1186/1475-2859-10-20
  15. Li, N., K. Meng, Y. R. Wang, P. J. Shi, H. Y. Luo, Y. G. Bai, et al. 2008. Cloning, expression, and characterization of a new xylanase with broad temperature adaptability from Streptomyces sp. S9. Appl. Microbiol. Biotechnol. 80: 231-240. https://doi.org/10.1007/s00253-008-1533-z
  16. Li, N., P. J. Shi, P. L. Yang, Y. R. Wang, H. Y. Luo, Y. G. Bai, et al. 2009. Cloning, expression, and characterization of a new Streptomyces sp. S27 xylanase for which xylobiose is the main hydrolysis product. Appl. Biochem. Biotechnol. 159: 521-531. https://doi.org/10.1007/s12010-008-8411-0
  17. Li, X., E. Li, Y. Zhu, C. Teng, B. Sun, H. Song, and R. Yang. 2012. A typical endo-xylanase from Streptomyces rameus L2001 and its unique characteristics in xylooligosaccharide production. Carbohydr. Res. 359: 30-36. https://doi.org/10.1016/j.carres.2012.05.005
  18. Li, Y. L., C. L. Long, K. Kato, C. Y. Yang, and K. Sato. 2011. Indigenous knowledge and traditional conservation of hulless barley (Hordeum vulgare) germplasm resources in the Tibetan communities of Shangri-la, Yunnan, SW China. Genet. Resour. Crop. Evol. 58: 645-655. https://doi.org/10.1007/s10722-010-9604-2
  19. Lucena-Neto, S. D. and E. X. Ferreira-Filho. 2004. Purification and characterization of a new xylanase from Humicola grisea var. thermoidea. Braz. J. Microbiol. 35: 86-90.
  20. Luo, H. Y., J. Li, J. Yang, H. Wang, Y. H. Yang, H. Q. Huang, et al. 2009. A thermophilic and acid stable family-10 xylanase from the acidophilic fungus Bispora sp. MEY-1. Extremophiles 13: 849-857. https://doi.org/10.1007/s00792-009-0272-0
  21. Luo, H. Y., Y. Wang, J. Li, H. Wang, J. Yang, Y. H. Yang, et al. 2009. Cloning, expression and characterization of a novel acidic xylanase, XYL11B, from the acidophilic fungus Bispora sp. MEY-1. Enzyme Microb. Technol. 45: 126-133. https://doi.org/10.1016/j.enzmictec.2009.05.002
  22. Masui, D. C., A. Zimbardi, F. H. M. Souza, L. H. S. Guimaraes, R. P. M. Furriel, and J. A. Jorge. 2012. Production of a xylosestimulated $\beta$-glucosidase and a cellulase-free thermostable xylanase by the thermophilic fungus Humicola brevis var. thermoidea under solid state fermentation. World J. Microbiol. Biotechnol. 28: 2689-2701. https://doi.org/10.1007/s11274-012-1079-1
  23. Menon, V., G. Prakash, A. Prabhune, and M. Rao. 2010. Biocatalytic approach for the utilization of hemicellulose for ethanol production from agricultural residue using thermostable xylanase and thermotolerant yeast. Bioresource Technol. 101: 5366-5373. https://doi.org/10.1016/j.biortech.2010.01.150
  24. O'Connell, S. and G. Walsh. 2007. Purification and properties of a $\beta$-galactosidase with potential application as a digestive supplement. Appl. Biochem. Biotechnol. 141: 1-13. https://doi.org/10.1007/s12010-007-9206-4
  25. Polizeli, M. L. T. M., A. C. S. Rizzatti, R. Monti, H. F. Terenzi, J. A. Jorge, and D. S. Amorim. 2005. Xylanases from fungi: Properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577-591. https://doi.org/10.1007/s00253-005-1904-7
  26. Prasertsan, P., A. H. Kittikul, A. Kunghae, J. Maneesri, and S. Oi. 1997. Optimization for xylanase and cellulase production from Aspergillus niger ATTC 6275 in palm oil mill wastes and its application. World J. Microbiol. Biotechnol. 13: 555-559. https://doi.org/10.1023/A:1018569426594
  27. Sato, Y., H. Fukuda, Y. Zhou, and S. Mikami. 2010. Contribution of ethanol-tolerant xylanase G2 from Aspergillus oryzae on Japanese sake brewing. J. Biosci. Bioeng. 110: 679-683. https://doi.org/10.1016/j.jbiosc.2010.07.015
  28. Wang, G., H. Luo, Y. Wang, H. Huang, P. Shi, P. Yang, et al. 2011. A novel cold-active xylanase gene from the environmental DNA of goat rumen contents: Direct cloning, expression and enzyme characterization. Bioresource Technol. 102: 3330-3336. https://doi.org/10.1016/j.biortech.2010.11.004
  29. Zhou, J. P., Y. J. Gao, Y. Y. Dong, X. H. Tang, J. J. Li, B. Xu, et al. 2012. A novel xylanase with tolerance to ethanol, salt, protease, SDS, heat, and alkali from actinomycete Lechevalieria sp. HJ3. J. Ind. Microbiol. Biot. 39: 965-975.
  30. Zhou, J. P., H. Q. Huang, K. Meng, P. J. Shi, Y. R. Wang, H. Y. Luo, et al. 2009. Molecular and biochemical characterization of a novel xylanase from the symbiotic Sphingobacterium sp. TN19. Appl. Microbiol. Biotechnol. 85: 323-333. https://doi.org/10.1007/s00253-009-2081-x
  31. Zhou, J. P., P. J. Shi, R. Zhang, H. Q. Huang, K. Meng, P. L. Yang, and B. Yao. 2011. Symbiotic Streptomyces sp. TN119 GH 11 xylanase: A new pH-stable, protease- and SDS-resistant xylanase. J. Ind. Microbiol. Biotechnol. 38: 523-530. https://doi.org/10.1007/s10295-010-0795-5
  32. Zhu, Y. P., X. T. Li, B. G. Sun, H. L. Song, E. Li, and H. X. Song. 2012. Properties of an alkaline-tolerant, thermostable xylanase from Streptomyces chartreusis L1105, suitable for xylooligosaccharide production. J. Food Sci. 77: C506-C511. https://doi.org/10.1111/j.1750-3841.2012.02671.x