DOI QR코드

DOI QR Code

Submerged Culture Conditions for the Production of Alternative Natural Colorants by a New Isolated Penicillium purpurogenum DPUA 1275

  • Santos-Ebinuma, Valeria Carvalho (Department of Biochemical and Pharmaceutical Technology, University of Sao Paulo) ;
  • Teixeira, Maria Francisca Simas (Culture Collection DPUA/UFAM. Universidade Federal do Amazonas) ;
  • Pessoa, Adalberto Jr. (Department of Biochemical and Pharmaceutical Technology, University of Sao Paulo)
  • Received : 2012.11.20
  • Accepted : 2013.01.25
  • Published : 2013.06.28

Abstract

This work aims at investigating the production of yellow, orange, and red natural colorants in a submerged culture of Penicillium purpurogenum DPUA 1275. For this purpose, different experimental conditions evaluating the effect of incubation time, type and size of inoculum, and different carbon and nitrogen sources were performed. Furthermore, the growth kinetics were obtained in the conditions of $10^8$ spores/ml and 5 mycelia agar discs during 360 h. These experiments showed that 5 mycelia agar discs and 336 h promoted the highest yellow (3.08 $UA_{400nm}$), orange (1.44 $UA_{470nm}$), and red (2.27 $UA_{490nm}$) colorants production. Moreover, sucrose and yeast extract were the most suitable carbon and nitrogen sources for natural colorants production. Thus, the present study shows a new source of natural colorants, which can be used as an alternative to others available in the market after toxicological studies.

Keywords

References

  1. Antunes, J. G. 1997. Bioconversao de D-xilose a etanol por Pichia stipitis. [S.l.]: Universidade Federal do Rio de Janeiro.
  2. Babitha, S., C. R. Soccol, and A. Pandey. 2007. Solid-state fermentation for the production of Monascus pigments from jackfruit seed. Bioresource Technol. 98: 1554-1560. https://doi.org/10.1016/j.biortech.2006.06.005
  3. Boo, H. O., S. J. Hwang, C. S. Bae, S. H. Park, B. G. Heo, and S. Gorinstein. 2012. Extraction and characterization of some natural plant pigments. Ind. Crops Prod. 40: 129-135. https://doi.org/10.1016/j.indcrop.2012.02.042
  4. Chen, M. H. and M. R. Johns. 1993. Effect of pH and nitrogen source on pigment production by Monascus purpureus. Appl. Microbiol. Biotechnol. 40: 132-138.
  5. Cho, Y. J., J. P. Park, H. J. Hwang, S. W. Kim, J. W. Choi, and J. W. Yun. 2002. Production of red pigment by submerged culture of Paecilomyces sinclairii. Lett. Appl. Microbiol. 35: 195-202. https://doi.org/10.1046/j.1472-765X.2002.01168.x
  6. Deveoglu, O., E. Cakmakc , T. Taskopru, E. Torgan, and R. Karadag. 2012. Identification by RP-HPLC-DAD, FTIR, TGA and FESEM-EDAX of natural pigments prepared from Datisca cannabina. Dyes Pigments 94: 437-442. https://doi.org/10.1016/j.dyepig.2012.02.002
  7. Dhake, A. B. and M. B. Pati. 2005. Production of $\beta$-glucosidase by Penicillium purpurogenum. Braz. J. Microbiol. 36: 170-176.
  8. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related compounds. Anal. Chem. 28: 350-356. https://doi.org/10.1021/ac60111a017
  9. Dufossé, L., P. Galaup, A. Yaron, S. M. Arad, P. Blanc, K. N. C. Murthy, and G. A. Ravishankar. 2005. Microorganisms and microalgae as sources of pigments for food use: A scientific oddity or an industrial reality? Trends Food Sci. Technol. 16: 389-406. https://doi.org/10.1016/j.tifs.2005.02.006
  10. Esposito, E. and J. L. Azevedo. 2004. Fungos: Uma introdução à biologia, bioquímica e biotecnologia. EDUCS, Caxias do Sul.
  11. Fang, T. J. and Y. S. Cheng. 1993. Improvement of astaxanthin production by Phaffia rhodozyma through mutation and optimization of culture conditions. J. Ferment. Bioeng. 75: 466-469. https://doi.org/10.1016/0922-338X(93)90099-T
  12. Gams, W., R. A. Samson, and J. A. Stalpers. 1975. Course of Mycology. Academy of Sciences and Letters, England.
  13. Gibbs, D. H., R. J. Seviour, and F. Schmid. 2000. Growth of filamentous fungi in submerged culture: Problems and possible solutions. Crit. Rev. Biotechnol. 20: 17-48. https://doi.org/10.1080/07388550091144177
  14. Griffin, D. H. 1994. Fungal Physiology. Wiley Liss.
  15. Gunasekaran, S. and R. Poorniammal. 2008. Optimization of fermentation conditions for red pigment production from Penicillium sp. under submerged cultivation. Afr. J. Biotechnol. 7: 1894-1898. https://doi.org/10.5897/AJB2008.000-5037
  16. Hailei, W., R. Zhifang, L. Ping, G. Yanchang, L. Guosheng, and Y. Jianming. 2011. Improvement of the production of a red pigment in Penicillium sp. HSD07B synthesized during coculture with Candida tropicalis. Bioresource Technol. 102: 6082-6087. https://doi.org/10.1016/j.biortech.2011.01.040
  17. Johns, M. R. and D. M. Stuart. 1991. Production of pigments by Monascus purpureus in solid culture. J. Ind. Microbiol. 8: 23-38. https://doi.org/10.1007/BF01575587
  18. Kang, S. G., J. W. Rhim, S. T. Jung, and S. J. Kim. 1996. Production of red and yellow pigment from Monascus anka in a jar fermenter. Korean J. Appl. Microbiol. Biotechnol. 24: 756-762.
  19. Kongruang, S. 2011. Growth kinetics of biopigment production by Thai isolated Monascus purpureus in a stirred tank bioreactor. J. Ind. Microbiol. Biot. 38: 93-99. https://doi.org/10.1007/s10295-010-0834-2
  20. Lehninger, A. L. 1976. Bioquímica, Componentes Moleculares das Células, 2nd Ed. Edgard Blucher Ltda, Sao Paulo.
  21. Maldonado, M. C., A. M. S. Saad, and D. Callieri. 1989. Catabolic repression of the synthesis of inducible polygalacturonase and pectinesterase by Aspergillus níger. Curr. Microbiol. 18: 303-306. https://doi.org/10.1007/BF01575945
  22. Manachini, P. L., M. G. Fortina, and C. Partini. 1987. Purification of endopolygalacturonase produced by Rhizopus stolonifer. Biotechnol. Lett. 9: 219-224. https://doi.org/10.1007/BF01024570
  23. Mapari, S. A. S., A. S. Meyer, U. Thrane, and J. C. Frisvad. 2009. Identification of potentially safe promising fungal cell factories for the production of polyketide natural food colorants using chematoxonomic rationale. Microb. Cell Fact. 8: 1-15. https://doi.org/10.1186/1475-2859-8-1
  24. Mapari, S. A. S., A. S. Meyer, and U. Thrane. 2009. Photostability of natural orange-red and yellow fungal pigments in liquid food model systems. J. Agric. Food Chem. 57: 6253-6261. https://doi.org/10.1021/jf900113q
  25. Mapari, S. A. S., U. Thrane, and A. S. Meyer. 2010. Fungal polyketide azaphilone pigments as future natural food colorants? Trends Biotechnol. 28: 300-307. https://doi.org/10.1016/j.tibtech.2010.03.004
  26. Marco, H. G. and G. Gade. 2010. Biological activity of the predicted red pigment-concentrating hormone of Daphnia pulex in a crustacean and an insect. Gen. Comp. Endocrinol. 166: 104-110. https://doi.org/10.1016/j.ygcen.2009.08.002
  27. Martín, J. F., J. Casqueiro, and P. Liras. 2005. Secretion systems for secondary metabolites: How producer cells send out messages of intercellular communication. Curr. Opin. Microbiol. 8: 282-293. https://doi.org/10.1016/j.mib.2005.04.009
  28. Meinicke, R. M., F. Vendruscolo, D. E. Moritz, D. de Oliveira, W. Schmidell, R. W. Samohyl, and J. L. Ninow. 2012. Potential use of glycerol as substrate for the production of red pigments by Monascus ruber in submerged fermentation. Biocatal. Agric. Biotechnol. 1: 238-242.
  29. Mendez, A., C. Perez, J. C. Montanez, G. Martinez, and C. N. Aguilar. 2011. Red pigment production by Penicillium purpurogenum GH2 is influenced by pH and temperature. J. Zhejiang Univ. Sci. B 12: 961-968. https://doi.org/10.1631/jzus.B1100039
  30. Omura, S., H. Ikeda, A. Hanamoto, C. Takahashi, M. Shinose, Y. Takahashi, et al. 2001. Genome sequence of an industrial microorganism Streptomyces avermitilis: Deducing the ability of producing secondary metabolites. Proc. Natl. Acad. Sci. USA 98: 12215-12220. https://doi.org/10.1073/pnas.211433198
  31. Pastrana, L., P. J. Blanc, A. L. Santerre, M. Loret, and G. Goma. 1995. Production of red pigments by Monascus ruber in synthetic media with a strictly controlled nitrogen source. Process Biochem. 30: 333-341. https://doi.org/10.1016/0032-9592(95)87042-3
  32. Piccoli-valle, R. H., F. J. V. Passos, I. V. Brandi, L. A. Peternelli, and D. O. Silva. 2003. Influence of different mixing and aeration regimens on pectin lyase production by Penicillium griseoroseum. Crop Sci. 38: 849-854.
  33. Pitt, J. 1985. A Laboratory Guide to Common Penicillium Species. CSIRO, Australia.
  34. Putzke, J. and M. T. L. Putzke. 2002. Reino dos Fungos. EDUNISC.
  35. Rapper, K. B. and D. I. Fennel. 1977. The Genus Aspergillus. Malabar Publishing Company, Florida.
  36. Saha, S., R. Thavasi, and S. Jayalakshmi. 2008. Phenazine pigments from Pseudomonas aeruginosa and their applications as antibacterial agent and food colourants. Res. J. Microbiol. 3: 122-128. https://doi.org/10.3923/jm.2008.122.128
  37. Samson, R. A., H. C. Evans, and J. P. Lagte. 1988. Atlas of Entomopathogenic Fungi. Springer-Verlag, Berlin, Heidelberg. New York.
  38. Teixeira, M. F. S., T. Amorim, R. A. Palheta, and H. M. Atayde. 2011. Fungos da Amazonia: Uma riqueza inexplorada (aplicacoes biotecnologicas). EDUA, Manaus.
  39. Teixeira, M. F. S., M. S. Martins, J. Da Silva, L. S. Kirsch, O. C. C. Fernandes, A. L. B. Carneiro, et al. 2012. Amazonian biodiversity: Pigments from Aspergillus and Penicillium - characterizations, antibacterial activities and their toxicities. Curr. Trends Biotechnol. Pharmacol. 6: 300-311.
  40. Teng, S. S. and W. Feldheim. 2001. Anka and anka pigment production. J. Ind. Microbiol. Biotechnol. 26: 280-282. https://doi.org/10.1038/sj.jim.7000126
  41. Unagul, P., P. Wongsa, P. Kittakoop, S. Intamas, and P. Srikitikulchai. 2005. Production of red pigments by the insect pathogenic fungus Cordyceps unilateralis BCC 1869. J. Ind. Microbiol. Biotechnol. 32: 135-140. https://doi.org/10.1007/s10295-005-0213-6
  42. Velmurugan, P., Y. H. Lee, C. K. Venil, P. Lakshmanaperumalsamy, J. C. Chae, and B. T. Oh. 2010. Effect of light on growth, intracellular and extracellular pigment production by five pigmentproducing filamentous fungi in synthetic medium. J. Biosci. Bioeng. 109: 346-350. https://doi.org/10.1016/j.jbiosc.2009.10.003
  43. Velmurugan, P., S. Kamala-Kannan, V. Balachandar, P. Lakshmanaperumalsamy, J. C. Chae, and B. T. Oh. 2010. Natural pigment extraction from five filamentous fungi for industrial applications and dyeing of leather. Carbohydr. Polym. 79: 262-268. https://doi.org/10.1016/j.carbpol.2009.07.058
  44. Wang, L., D. Ridgway, T. Gu, and M. Moo-Young. 2005. Bioprocessing strategies to improve heterologous protein production in filamentous fungal fermentations. Biotechnol. Adv. 23: 115-129. https://doi.org/10.1016/j.biotechadv.2004.11.001
  45. Wybraniec, S. 2005. Formation of decarboxylated betacyanins in heated purified fractions from red beet root (Beta vulgaris L.) monitored by LC-MS/MS. J. Agric. Food Chem. 53: 3483-3487. https://doi.org/10.1021/jf048088d
  46. Yang, L. H., H. Xiong, O. O. Lee, S. H. Qi, and P. Y. Qian. 2007. Effect of agitation on violacein production in Pseudoalteromonas luteoviolacea isolated from a marine sponge. Lett. Appl. Microbiol. 44: 625-630. https://doi.org/10.1111/j.1472-765X.2007.02125.x

Cited by

  1. Talaromyces atroroseus , a New Species Efficiently Producing Industrially Relevant Red Pigments vol.8, pp.12, 2013, https://doi.org/10.1371/journal.pone.0084102
  2. Extraction of natural red colorants from the fermented broth ofPenicillium purpurogenumusing aqueous two-phase polymer systems vol.31, pp.5, 2013, https://doi.org/10.1002/btpr.2127
  3. Exploration of industrially important pigments from soil fungi vol.100, pp.4, 2013, https://doi.org/10.1007/s00253-015-7231-8
  4. Natural colorants from filamentous fungi vol.100, pp.6, 2016, https://doi.org/10.1007/s00253-015-7274-x
  5. Selection of best conditions of inoculum preparation for optimum performance of the pigment production process by Talaromyces spp. using the Taguchi method vol.33, pp.3, 2013, https://doi.org/10.1002/btpr.2470
  6. Production and New Extraction Method of Polyketide Red Pigments Produced by Ascomycetous Fungi from Terrestrial and Marine Habitats vol.3, pp.3, 2013, https://doi.org/10.3390/jof3030034
  7. Water-soluble fluorescent red colorant production by Talaromyces amestolkiae vol.103, pp.16, 2013, https://doi.org/10.1007/s00253-019-09972-z
  8. The interweaving roles of mineral and microbiome in shaping the antibacterial activity of archaeological medicinal clays vol.260, pp.None, 2020, https://doi.org/10.1016/j.jep.2020.112894
  9. Microbial Colorants Production in Stirred-Tank Bioreactor and Their Incorporation in an Alternative Food Packaging Biomaterial vol.6, pp.4, 2013, https://doi.org/10.3390/jof6040264