참고문헌
- Ali, N., A. Hameed, and S. Ahmed. 2008. Physiochemical characterization and bioremediation perspective of textile effluent, dyes and metals by indigenous bacteria. J. Hazard. Mater. 163: 735-743.
- Do, T., J. Shen, G. Carwood, and R. Jenkins. 2002. Biotreatment of textile effluent using Pseudomonas spp. imobilised on polymer support, pp 35-45. In I. R. Hardin, D. E. Akin, and S. J. Wilson (eds.). Advanced Biotechnology for Textile Processes. The University of Georgia.
- D'Souza, D. T., R. Tiwari, A. K. Sah, and C. Raghukumar. 2007. Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes. Enzyme Microb. Technol. 38: 504-511.
- Glare, T. R. and M. O'Callaghan. 2000. Bacillus thuringiensis: Biology, Ecology and Safety. John Wiley & Sons, New York.
- Goncalves, I. M. C., A. Gomes, R. Bras, M. I. A. Ferra, M. T. P. Amorin, and R. S. Porter. 2000. Biological treatment of effluent containing textile dyes. J. Soc. Dyers Colour. 116: 393-397.
- Have, R. T., S. Hartmans, P. J. M. Teunissen, and Y. A. Field. 1997. Purification and characterisation of two peroxidase isozymes produced by Bjerkandera sp. strain BOS55. FEBS Lett. 422: 391-394.
- Jadhav, U. U., V. V. Dawkar, D. P. Tamboli, and S. P. Govindwar. 2009. Purification and characterization of veratryl alcohol oxidase from Comamonas sp. UVS and its role in decolorization of textile dyes. Biotechnol. Bioprocess Eng. 14: 369-376. https://doi.org/10.1007/s12257-008-0300-4
- Jalandoni-Buan A. C., A. L. A. Decena-Soliven, E. P. Cao, V. L. Barraquio, and W. L. Barraquio. 2010. Characterization and identification of Congo red decolorizing bacteria from monocultures and consortia. Philipp. J. Sci. 139: 71-78.
- Kalyani, D. C., P. S. Patil, J. P. Jadhav, and S. P. Govindwar. 2008. Biodegradation of reactive textile dye Red BLI by an isolated bacterium sp. SUK1. Bioresour. Technol. 99: 4635- 4641. https://doi.org/10.1016/j.biortech.2007.06.058
- Kalme, S. D., G. K. Parshetti, S. U. Jadhav, and S. P. Govindwar. 2006. Biodegradation of benzidine based dye Direct blue-6 by Pseudomonas desmolyticum NCIM 2112. Bioresour. Technol. 98: 1405-1410.
- Maier, J., A. Kandelbauer, A. Erlacher, A. Cavaco-Paulo, and G. M. Gubits. 2004. A new alkali-thermostable azoreductase from Bacillus sp. strain SF. Appl. Environ. Microbiol. 70: 837-844. https://doi.org/10.1128/AEM.70.2.837-844.2004
- Marzullo, L., R. Cannio, P. Giardina, M. T. Santini, and G. Sannia. 1995. Veratryl alcohol oxidase from Pleurotus ostreatus participates in lignin biodegradation and prevents polymerization of laccase-oxidized substrates. J. Biol. Chem. 270: 3823-3827. https://doi.org/10.1074/jbc.270.8.3823
- Nagai, M., T. Sato, H. Watanabe, K. Saito, M. Kawata, and H. Enei. 2002. Purification and characterization of an extracellular laccase from the edible mushroom Lentinula edodes, and decolorization of chemically different dyes. Appl. Microbiol. Biotechnol. 60: 327-335. https://doi.org/10.1007/s00253-002-1109-2
- Olukanni, O. D., A. A. Osuntoki, and G. O. Gbenle. 2006. Textile effluent biodegradation potentials of textile effluentadapted and non-adapted bacteria. Afr. J. Biotechnol. 5: 1980- 1984.
- Olukanni, O. D., A. A. Osuntoki, and G. O. Gbenle. 2009. Decolorization of azo dyes by a strain of Micrococcus isolated from a refuse dump soil. Biotechnology 8: 42-48.
- Olukanni, O. D., A. A. Osuntoki, D. C. Kalyani, G. O. Gbenle, and S. P. Govindwar. 2010. Decolorization and biodegradation of Reactive Blue 13 by Proteus mirabilis LAG. J. Hazard. Mater. 184: 290-298. https://doi.org/10.1016/j.jhazmat.2010.08.035
- Raj, A., R. Chandra, M. M. K. Reddy, H. J. Purohit, and A. Kapley. 2007. Biodegradation of kraft lignin by a newly isolated bacterial strain, Aneurinibacillus aneurinilyticus from the sludge of a pulp paper mill. World J. Microbiol. Biotechnol. 23: 793-799. https://doi.org/10.1007/s11274-006-9299-x
- Scherpenisse, P. and A. A. Bergwerff. 2004. Determination of residues of malachite green in finfish by liquid chromatography tandem mass spectrometry Anal. Chim. Acta 529: 173-177
- Sponza, D. T. 2002. Necessity of toxicity assessment in Turkish industrial discharges (examples from metal and textile industry effluents). Environ. Monit. Assess. 73: 41-66. https://doi.org/10.1023/A:1012663213153
- Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software (version 4.0). Mol. Biol. Evol. 24: 596-1599.
- Van der Zee, F. 2002. Anaerobic azo dye reduction. Ph.D. Thesis. Wageningen University, The Netherlands.
- Verma, P. and D. Madamwar. 2003. Decolorization of synthetic dyes by a newly isolated strain of Serratia marcescens. World J. Microbiol. Biotechnol. 19: 615-618. https://doi.org/10.1023/A:1025115801331
- Wesenberg, D., I. Kyriakides, and S. N. Agathos. 2003. Whiterot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv. 22: 161-187. https://doi.org/10.1016/j.biotechadv.2003.08.011
- Zhang, X. and W. Flurkey. 1997. Phenol oxidases in Portabella mushrooms. J. Food Sci. 62: 97-100. https://doi.org/10.1111/j.1365-2621.1997.tb04376.x
피인용 문헌
- Decolorization of azo dyes (Direct Blue 151 and Direct Red 31) by moderately alkaliphilic bacterial consortium vol.47, pp.1, 2013, https://doi.org/10.1016/j.bjm.2015.11.013
- Efficient solar light-driven degradation of Congo red with novel Cu-loaded Fe3O4@TiO2 nanoparticles vol.24, pp.24, 2017, https://doi.org/10.1007/s11356-017-9571-7
- Photocatalytic Degradation of Congo Red Using PbTiO 3 Nanorods Synthesized via a Sonochemical Approach vol.3, pp.42, 2018, https://doi.org/10.1002/slct.201802303
- Sustainable synthesis of silver nanoparticles using exposed X-ray sheets and forest-industrial waste biomass: Assessment of kinetic and catalytic properties for degradation of toxic dyes mixture vol.247, pp.None, 2013, https://doi.org/10.1016/j.jenvman.2019.06.078
- The heterologous expression, characterization, and application of a novel laccase from Bacillus velezensis vol.713, pp.None, 2013, https://doi.org/10.1016/j.scitotenv.2020.136713
- Molecular identification of dye degrading bacterial isolates and FT-IR analysis of degraded products vol.25, pp.4, 2013, https://doi.org/10.4491/eer.2019.224
- Effect of pH variation on the activity of green algae (Chlorella Vulgaris) and bacteria (Bacillus subtilis) in remediation of toxic dye (Congo red) vol.779, pp.1, 2013, https://doi.org/10.1088/1755-1315/779/1/012108
- Removal of Congo red dyes from aqueous solutions by porous γ-alumina nanoshells vol.286, pp.p2, 2022, https://doi.org/10.1016/j.chemosphere.2021.131769