참고문헌
- Apweiler, R., T. K. Attwood, A. Bairoch, A. Bateman, E. Birney, M. Biswas, et al. 2001. The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Res. 29: 37-40. https://doi.org/10.1093/nar/29.1.37
- Biver, S. and M. Vandenbol. 2013. Characterization of three new carboxylic ester hydrolases isolated by functional screening of a forest soil metagenomic library. J. Ind. Microbiol. Biotechnol. 40: 191-200. https://doi.org/10.1007/s10295-012-1217-7
- Cao, G., X. Zhang, L. Zhong, and Z. Lu. 2011. A modified electro-transformation method for Bacillus subtilis and its application in the production of antimicrobial lipopeptides. Biotechnol. Lett. 33: 1047-1051. https://doi.org/10.1007/s10529-011-0531-x
- Chen, X. H., J. Vater, J. Piel, P. Franke, R. Scholz, K. Schneider, et al. 2006. Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB 42. J. Bacteriol. 188: 4024-4036. https://doi.org/10.1128/JB.00052-06
- Chung, E. J., H. K. Lim, J. C. Kim, G. J. Choi, E. J. Park, M. H. Lee, et al. 2008. Forest soil metagenome gene cluster involved in antifungal activity expression in Escherichia coli. Appl. Environ. Microbiol. 74: 723-730. https://doi.org/10.1128/AEM.01911-07
- Courtois, S., C. M. Cappellano, M. Ball, F. X. Francou, P. Normand, G. Helynck, et al. 2003. Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products. Appl. Environ. Microbiol. 69: 49-55. https://doi.org/10.1128/AEM.69.1.49-55.2003
- Craig, J. W., F. Y. Chang, and S. F. Brady. 2009. Natural products from environmental DNA hosted in Ralstonia metallidurans. ACS Chem. Biol. 4: 23-28. https://doi.org/10.1021/cb8002754
- Craig, J. W., F. Y. Chang, J. H. Kim, S. C. Obiajulu, and S. F. Brady. 2010. Expanding small-molecule functional metagenomics through parallel screening of broad-host-range cosmid environmental DNA libraries in diverse proteobacteria. Appl. Environ. Microbiol. 76: 1633-1641. https://doi.org/10.1128/AEM.02169-09
- Daniel, R. 2004. The soil metagenome - a rich resource for the discovery of novel natural products. Curr. Opin. Biotechnol. 15: 199-204. https://doi.org/10.1016/j.copbio.2004.04.005
- Daniel, R. 2005. The metagenomics of soil. Nat. Rev. Microbiol. 3: 470-478. https://doi.org/10.1038/nrmicro1160
- Duan, C. J. and J. X. Feng. 2010. Mining metagenomes for novel cellulase genes. Biotechnol. Lett. 32: 1765-1775. https://doi.org/10.1007/s10529-010-0356-z
- Felnagle, E. A., E. E. Jackson, Y. A. Chan, A. M. Podevels, A. D. Berti, M. D. McMahon, and M. G. Thomas. 2008. Nonribosomal peptide synthetases involved in the production of medically relevant natural products. Mol. Pharm. 5: 191-211. https://doi.org/10.1021/mp700137g
- Gabor, E. M., W. B. Alkema, and D. B. Janssen. 2004. Quantifying the accessibility of the metagenome by random expression cloning techniques. Environ. Microbiol. 6: 879-886. https://doi.org/10.1111/j.1462-2920.2004.00640.x
- Gillespie, D. E., S. F. Brady, A. D. Bettermann, N. P. Cianciotto, M. R. Liles, M. R. Rondon, et al. 2002. Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA. Appl. Environ. Microbiol. 68: 4301-4306. https://doi.org/10.1128/AEM.68.9.4301-4306.2002
- Juncker, A. S., H. Willenbrock, G. Von Heijne, S. Brunak, H. Nielsen, and A. Krogh. 2003. Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci. 12: 1652-1662. https://doi.org/10.1110/ps.0303703
- Kennedy, J., N. D. O'Leary, G. S. Kiran, J. P. Morrissey, F. O'Gara, J. Selvin, and A. D. Dobson. 2011. Functional metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine ecosystems. J. Appl. Microbiol. 111: 787-799. https://doi.org/10.1111/j.1365-2672.2011.05106.x
- Lim, H. K., E. J. Chung, J. C. Kim, G. J. Choi, K. S. Jang, Y. R. Chung, et al. 2005. Characterization of a forest soil metagenome clone that confers indirubin and indigo production on Escherichia coli. Appl. Environ. Microbiol. 71: 7768-7777. https://doi.org/10.1128/AEM.71.12.7768-7777.2005
- MacNeil, I. A., C. L. Tiong, C. Minor, P. R. August, T. H. Grossman, K. A. Loiacono, et al. 2001. Expression and isolation of antimicrobial small molecules from soil DNA libraries. J. Mol. Microbiol. Biotechnol. 3: 301-308.
- McMahon, M. D., C. Guan, J. Handelsman, and M. G. Thomas. 2012. Metagenomic analysis of Streptomyces lividans reveals host-dependent functional expression. Appl. Environ. Microbiol. 78: 3622-3629. https://doi.org/10.1128/AEM.00044-12
- Nimchua, T., T. Thongaram, T. Uengwetwanit, S. Pongpattanakitshote, and L. Eurwilaichitr. 2012. Metagenomic analysis of novel lignocellulose-degrading enzymes from higher termite guts inhabiting microbes. J. Microbiol. Biotechnol. 22: 462-469. https://doi.org/10.4014/jmb.1108.08037
- Nishie, M., J. Nagao, and K. Sonomoto. 2012. Antibacterial peptides "bacteriocins": An overview of their diverse characteristics and applications. Biocontrol Sci. 17: 1-16. https://doi.org/10.4265/bio.17.1
- Ono, A., R. Miyazaki, M. Sota, Y. Ohtsubo, Y. Nagata, and M. Tsuda. 2007. Isolation and characterization of naphthalenecatabolic genes and plasmids from oil-contaminated soil by using two cultivation-independent approaches. Appl. Microbiol. Biotechnol. 74: 501-510. https://doi.org/10.1007/s00253-006-0671-4
- Paik, H. D., S. S. Bae, S. H. Park, and J. G. Pan. 1997. Identification and partial characterization of tochicin, a bacteriocin offduced by Bacillus thuringiensis subsp tochigiensis. J. Ind. Microbiol. Biotechnol. 19: 294-298. https://doi.org/10.1038/sj.jim.2900462
- Pushpam, P. L., T. Rajesh, and P. Gunasekaran. 2011. Identification and characterization of alkaline serine protease from goat skin surface metagenome. AMB Express 1: 3. https://doi.org/10.1186/2191-0855-1-3
- Reis, J. A., A. T. Paula, S. N. Casarotti, and A. L. B. Penna. 2012. Lactic acid bacteria antimicrobial compounds: Characteristics and applications. Food Eng. Rev. 4: 124-140. https://doi.org/10.1007/s12393-012-9051-2
- Rondon, M. R., P. R. August, A. D. Bettermann, S. F. Brady, T. H. Grossman, M. R. Liles, et al. 2000. Cloning the soil metagenome: A strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66: 2541-2547. https://doi.org/10.1128/AEM.66.6.2541-2547.2000
- Torsvik, V., F. L. Daae, R. A. Sandaa, and L. Ovreas. 1998. Novel techniques for analysing microbial diversity in natural and perturbed environments. J. Biotechnol. 64: 53-62. https://doi.org/10.1016/S0168-1656(98)00103-5
- Torsvik, V., J. Goksoyr, and F. L. Daae. 1990. High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 56: 782-787.
- Walsh, C. T. 2004. Polyketide and nonribosomal peptide antibiotics: Modularity and versatility. Science 303: 1805-1810. https://doi.org/10.1126/science.1094318
- Wang, G. Y., E. Graziani, B. Waters, W. Pan, X. Li, J. McDermott, et al. 2000. Novel natural products from soil DNA libraries in a streptomycete host. Org. Lett. 2: 2401-2404. https://doi.org/10.1021/ol005860z
- Wexler, M., P. L. Bond, D. J. Richardson, and A. W. Johnston. 2005. A wide host-range metagenomic library from a waste water treatment plant yields a novel alcohol/aldehyde dehydrogenase. Environ. Microbiol. 7: 1917-1926. https://doi.org/10.1111/j.1462-2920.2005.00854.x
피인용 문헌
- Characterization of a new oxidant-stable serine protease isolated by functional metagenomics vol.2, pp.1, 2013, https://doi.org/10.1186/2193-1801-2-410
- The Combination of Functional Metagenomics and an Oil-Fed Enrichment Strategy Revealed the Phylogenetic Diversity of Lipolytic Bacteria Overlooked by the Cultivation-Based Method vol.29, pp.2, 2013, https://doi.org/10.1264/jsme2.me14002
- Functional metagenomics for the investigation of antibiotic resistance vol.5, pp.3, 2014, https://doi.org/10.4161/viru.28196
- Improved cultivation and metagenomics as new tools for bioprospecting in cold environments vol.19, pp.1, 2015, https://doi.org/10.1007/s00792-014-0704-3
- Biotechnological applications of functional metagenomics in the food and pharmaceutical industries vol.6, pp.None, 2013, https://doi.org/10.3389/fmicb.2015.00672
- Biosurfactants Produced by Marine Microorganisms with Therapeutic Applications vol.14, pp.2, 2013, https://doi.org/10.3390/md14020038
- Functional metagenomics reveals novel β-galactosidases not predictable from gene sequences vol.12, pp.3, 2013, https://doi.org/10.1371/journal.pone.0172545
- Multistep Metabolic Engineering of Bacillus licheniformis To Improve Pulcherriminic Acid Production vol.86, pp.9, 2013, https://doi.org/10.1128/aem.03041-19