DOI QR코드

DOI QR Code

수치해석을 통한 콘크리트 부유구조체 길이에 따른 운동 및 구조성능 검토

Hydrodynamic Motion and Structural Performance of Concrete Floating Structure by Length Using Numerical Analysis

  • 이두호 (한국건설기술연구원 인프라구조연구실) ;
  • 유영준 (한국건설기술연구원 인프라구조연구실)
  • Lee, Du-Ho (Korea Institute of Construction Technology, Structural Engineering Research Division) ;
  • You, Young-Jun (Korea Institute of Construction Technology, Structural Engineering Research Division)
  • 투고 : 2012.11.06
  • 심사 : 2013.04.12
  • 발행 : 2013.08.31

초록

이 연구에서는 부유구조체의 단면특성은 동일하지만, 길이가 서로 다른 4가지의 대형 콘크리트 부유구조체에 대하여 운동 특성 및 구조성능의 해석적 연구를 수행하였다. 부유구조체 설치해역은 수심이 35 m인 연안을 대상으로 하였으며, 설치해역에서 발생할 수 있는 파랑주기 3초~10초 34개 규칙 파랑하중을 적용하였다. ANSYS-AQWA를 통하여 부유구조체의 동수역학 해석을 수행하였으며, 운동 특성을 검토하였다. 또한, 34개 파랑하중에서 부유구조체에 최대 응답진폭을 나타내는 위험 파랑하중을 선정하였으며, 선정된 위험파랑하중으로 인해 부유구조체에 도입되는 파압을 도출하였다. 위험 파랑하중으로 인해 도출된 파압을 부유구조체에 매핑(mapping)하여 구조성능을 검토하였다. 해석 결과를 종합해볼 때, 부유구조체의 길이가 증가할수록 부유구조체의 운동이 감소하는 것을 알 수 있다. 이것은 부유구조체와 파랑하중의 상호작용의 효과는 파랑주기와 구조물 길이에 지배적인 것으로 사료된다. 또한, 위험 파랑하중으로 인해 부유구조체의 하부슬래브는 인장응력이 발생하며, 부유구조체 길이는 단면력에 영향을 미치지 못하는 것을 알 수 있다.

In the present study, numerical analysis was performed for hydrodynamic motion and structural performance on four different concrete floating structures, which have same cross-section but different length. The hydrodynamic analysis of floating structures is carried out using ANSYS AQWA with the different 34 wave load on regular wave period from three seconds to ten seconds in 35 m water depth. In order to evaluate structural performance of floating structures under the critical wave load which obtained from hydrodynamic analysis. The integrated analysis is also carried out through the mapping method, which can directly connect the wave-induced hydraulic pressure obtained form ANSYS AQWA to Finite Element Model in ANSYS Mechanical. As a results of this study, the hydrodynamic motion of floating structures is decreased as the length of structure increased. It means that the effect of wave-structure interaction is strongly dependent on the relationship between a wave period and a length of structure. Moreover, it is found that tension stress on bottom slab of floating structure is occurred by the critical wave load, the sectional force is not influenced by length of a structure.

키워드

참고문헌

  1. Link, R. A. and Elwi, A. E. "Composite Concrete-Steel Plate Walls: Analysis and Behavior," Journal of Structural Engineering ASCE, 1995, Vol. 121, pp. 260-271. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:2(260)
  2. Lanquetin, B., Collet, P., and Esteve, J., "Structural Integrity Management for a Large Prestressed Concrete Floating Production Unit," 26th International Conference on Offshore, Mechanics and Arctic Engineering, SanDiego, 2007, pp. 1-12.
  3. Clauss, G. F., Sprenger, F., Testa, D., Hoon, S., and Huhn, R., "Motion Behaviour of a New Offshore LNG Transfer System at Harsh Operational Conditions," 28th International Conference on Ocean, Offshore and Arctic Engineering, Honolulu, USA, 2009, pp. 385-939.
  4. Cheetham, P., Du, S., May, R., and Smith, S. "Hydrodynamic Analysis of Ship Side by Side in Waves," International Aerospace CFD Conference, Paris, France, 2007.
  5. Palo, P., "Mobile Offshore Base: Hydrodynamic Adv Ancements and Remaining Challenges," Marine Structures, 2005, pp. 133-147.
  6. ANSYS AQWA Uer's Manual, ANSYS Inc 2010, 84 pp.
  7. Thanh, N. H., Noh, H. C., Kim, S. E., and Na, S. W., "Estimation of the Design Member Forces in Very Large Floating Structure due to Wave Loads," Journal of The Korea Society of Civil Engineers, Vol. 29, No. 6A, 2007, pp. 641-650.
  8. Zi, G. S., Kim, J. G., Lee, S. O., and Lee, P. S., "Development of a Design Chart for the Initial Design Stage of Very Large Floating Structures," Journal of The Korea Society of Civil Engineers, Vol. 30, No. 3B, 2010, pp. 315-324.
  9. Hong, S. Y., Design Manual for Very Large Floating Structure, KORDI, 2007, 280 pp.
  10. Kim, K. T., "Hydroelastic Analysis of Three Dimensional Floating Structures," MS. C. Thesis, KAIST, Korea, 2007, 55 pp.
  11. Allen, E., Dees, D., Hicks, S., Hollibaugh, R., Martin, T., and Starling, T., "Design of Floating Production Storage and Offloading Vessel for Offshore Indonesia," Final Report, Texas A&M University, Texas, 2006, 88 pp.
  12. Jeong, Y. J., Cho, J. Y., You, Y. J., and Na, S. W., "Stability and Wave-Induced Bending Moment for Design of Offshore Floating Terminal," 9th Pacific Structural Steel Conference, Beijing, 2010, pp. 369-374.
  13. Korea Institute of Construction Technology, Development of Application Technology for Concrete Floating Structure, Korea, 2010, 457 pp.