DOI QR코드

DOI QR Code

Reference Gene Screening for Analyzing Gene Expression Across Goat Tissue

  • Zhanga, Yu (Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University) ;
  • Zhang, Xiao-Dong (Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University) ;
  • Liu, Xing (Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University) ;
  • Li, Yun-Sheng (Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University) ;
  • Ding, Jian-Ping (Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University) ;
  • Zhang, Xiao-Rong (Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University) ;
  • Zhang, Yun-Hai (Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University)
  • 투고 : 2013.04.09
  • 심사 : 2013.06.03
  • 발행 : 2013.12.01

초록

Real-time quantitative PCR (qRT-PCR) is one of the important methods for investigating the changes in mRNA expression levels in cells and tissues. Selection of the proper reference genes is very important when calibrating the results of real-time quantitative PCR. Studies on the selection of reference genes in goat tissues are limited, despite the economic importance of their meat and dairy products. We used real-time quantitative PCR to detect the expression levels of eight reference gene candidates (18S, TBP, HMBS, YWHAZ, ACTB, HPRT1, GAPDH and EEF1A2) in ten tissues types sourced from Boer goats. The optimal reference gene combination was selected according to the results determined by geNorm, NormFinder and Bestkeeper software packages. The analyses showed that tissue is an important variability factor in genes expression stability. When all tissues were considered, 18S, TBP and HMBS is the optimal reference combination for calibrating quantitative PCR analysis of gene expression from goat tissues. Dividing data set by tissues, ACTB was the most stable in stomach, small intestine and ovary, 18S in heart and spleen, HMBS in uterus and lung, TBP in liver, HPRT1 in kidney and GAPDH in muscle. Overall, this study provided valuable information about the goat reference genes that can be used in order to perform a proper normalisation when relative quantification by qRT-PCR studies is undertaken.

키워드

참고문헌

  1. Andersen, C. L., J. L. Jensen, and T. F. Orntoft. 2004. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64:5245-5250. https://doi.org/10.1158/0008-5472.CAN-04-0496
  2. Bustin, S. A., V. Benes, J. A. Garson, J. Hellemans, J. Huggett, M. Kubista, R. Mueller, T. Nolan, M. W. Pfaffl, G. L. Shipley, J. Vandesompele, and C. T. Wittwer. 2009. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55: 611-622. https://doi.org/10.1373/clinchem.2008.112797
  3. Chechi, K., Y. Gelinas, P. Mathieu, Y. Deshaies, and D. Richard. 2012. Validation of reference genes for the relative quantification of gene expression in human epicardial adipose tissue. PloS one 7:e32265. https://doi.org/10.1371/journal.pone.0032265
  4. Chi, X., R. Hu, Q. Yang, X. Zhang, L. Pan, N. Chen, M. Chen, Z. Yang, T. Wang, Y. He, and S. Yu. 2012. Validation of reference genes for gene expression studies in peanut by quantitative real-time RT-PCR. Mol. Genet. Genomics 287:167-176. https://doi.org/10.1007/s00438-011-0665-5
  5. Dabek, J., J. Ligus, and J. Szota. 2010. Oligonucleotide microarray and QRT-PCR study of adhesion protein gene expression in acute coronary syndrome patients. Inflammation 33:398-407. https://doi.org/10.1007/s10753-010-9198-z
  6. Domby, E., T. Engle, and H. Han. 2010. The relationship of tissue copper concentrations and genes involved in copper homeostasis in the cow, pig, and goat. J. Dairy Sci 93:403-404.
  7. Dubeuf, J. P., P. Morand-Fehr, and R. Rubino. 2004. Situation, changes and future of goat industry around the world. Small Rumin. Res. 51:165-173. https://doi.org/10.1016/j.smallrumres.2003.08.007
  8. Fleige, S. and M. W. Pfaffl. 2006. RNA integrity and the effect on the real-time qRT-PCR performance. Mol. Aspects Med. 27: 126-139. https://doi.org/10.1016/j.mam.2005.12.003
  9. Fu, Y., Z. Shi, M. Wu, J. Zhang, L. Jia, and X. Chen. 2011. Identification and differential expression of microRNAs during metamorphosis of the Japanese flounder(Paralichthys olivaceus). Plos One 6:e22957. https://doi.org/10.1371/journal.pone.0022957
  10. Garcia-Crespo, D., R. A. Juste, and A. Hurtado. 2005. Selection of ovine housekeeping genes for normalisation by real-time RT-PCR; analysis of PrP gene expression and genetic susceptibility to scrapie. BMC Vet. Res. 1:3. https://doi.org/10.1186/1746-6148-1-3
  11. Kidd, M., B. Nadler, S. Mane, G. Eick, M. Malfertheiner, M. Champaneria, R. Pfragner, and I. Modlin. 2007. GeneChip, geNorm, and gastrointestinal tumors: novel reference genes for real-time PCR. Physiol. Genomics 30:363-370. https://doi.org/10.1152/physiolgenomics.00251.2006
  12. Kortner, T. M., E. C. Valen, H. Kortner, I. S. Marjara, A. Krogdahl, and A. M. Bakke. 2011. Candidate reference genes for quantitative real-time PCR (qPCR) assays during development of a diet-related enteropathy in Atlantic salmon (Salmo salar L.) and the potential pitfalls of uncritical use of normalization software tools. Aquaculture 318: 355-363. https://doi.org/10.1016/j.aquaculture.2011.05.038
  13. Lanoix, D., A. A. Lacasse, J. St-Pierre, S.C. Taylor, M. Ethier-Chiasson, J. Lafond, and. C. Vaillancourt. 2012. Quantitative PCR pitfalls: The case of the human placenta. Mol. Biotechnol 52 234-243. https://doi.org/10.1007/s12033-012-9539-2
  14. Lardizabal, M. N., A. L. Nocito, S. M. Daniele, L. A. Ornella, J. F. Palatnik, and L. M. Veggi. 2012. Reference genes for real-time PCR quantification of microRNAs and messenger RNAs in rat models of hepatotoxicity. PloS one 7:e36323. https://doi.org/10.1371/journal.pone.0036323
  15. Lisowski, P., M. Pierzchala, J. Goscik, C. S. Pareek, and L. Zwierzchowski. 2008. Evaluation of reference genes for studies of gene expression in the bovine liver, kidney, pituitary, and thyroid. J. Appl. Genet. 49:367-372. https://doi.org/10.1007/BF03195635
  16. Mehta, R., A. Birerdinc, N. Hossain, A. Afendy, V. Chandhoke, Z. Younossi, and A. Baranova. 2010. Validation of endogenous reference genes for qRT-PCR analysis of human visceral adipose samples. BMC Mol. Biol. 11:39. https://doi.org/10.1186/1471-2199-11-39
  17. Moioli, B., M. D'Andrea, and F. Pilla. 2007. Candidate genes affecting sheep and goat milk quality. Small Rumin. Res 68: 179-192. https://doi.org/10.1016/j.smallrumres.2006.09.008
  18. Nesvadbova, M. and A. Knoll. 2011. Evaluation of reference genes for gene expression studies in pig muscle tissue by real-time PCR. Czech J. Anim. Sci. 56:213-216.
  19. Novinscak, A., V. J. Gadkar, and M. Filion. 2011. Optimization of RNA isolation and qRT-PCR strategies to monitor microbial gene expression in soil. Phytopathology 101: S130-S130.
  20. Nygard, A. B., C. B. Jorgensen, S. Cirera, and M. Fredholm. 2007. Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR. BMC Mol. Biol. 8:67. https://doi.org/10.1186/1471-2199-8-67
  21. Perez, R., I. Tupac-Yupanqui, and S. Dunner. 2008. Evaluation of suitable reference genes for gene expression studies in bovine muscular tissue. BMC Mol. Biol. 9:79. https://doi.org/10.1186/1471-2199-9-79
  22. Pfaffl, M. W., A. Tichopad, C. Prgomet, and T. P. Neuvians. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper - Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26:509-515. https://doi.org/10.1023/B:BILE.0000019559.84305.47
  23. Pierzchala, M., C. S. Pareek, P. Urbanski, D. Goluch, M. Kamyczek, M. Rozycki, and J. Kuryl. 2011. Selection of reference genes for gene expression studies in porcine hepatic tissue using quantitative real-time polymerase chain reaction. Anim. Sci. Pap. Rep. 29:53-63.
  24. Radonic, A., S. Thulke, I. M. Mackay, O. Landt, W. Siegert, and A. Nitsche. 2004. Guideline to reference gene selection for quantitative real-time PCR. Biochem. Biophys. Res. Commun. 313: 856-862. https://doi.org/10.1016/j.bbrc.2003.11.177
  25. Rivera-Vega, L., P. Mamidala, J. L. Koch, M. E. Mason, and O. Mittapalli. 2012. Evaluation of Reference Genes for Expression Studies in Ash (Fraxinus spp.). Plant Mol. Biol. Rep. 30:242-245. https://doi.org/10.1007/s11105-011-0340-3
  26. Schmid, H., C. D. Cohen, A. Henger, S. Irrgang, D. Schlondorff, and M. Kretzler. 2003. Validation of endogenous controls for gene expression analysis in microdissected human renal biopsies. Kidney Int. 64:356-360. https://doi.org/10.1046/j.1523-1755.2003.00074.x
  27. Spalenza, V., F. Girolami, C. Bevilacqua, F. Riondato, R. Rasero, C. Nebbia, P. Sacchi, and P. Martin. 2011. Identification of internal control genes for quantitative expression analysis by real-time PCR in bovine peripheral lymphocytes. Vet. J. 189: 278-283. https://doi.org/10.1016/j.tvjl.2010.11.017
  28. Vandesompele, J., K. De Preter, F. Pattyn, B. Poppe, N. Van Roy, A. De Paepe, and F. Speleman. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3: research0034.1-0034.11
  29. Veys, K., A. J. Labro, E. De Schutter, and D. J. Snyders. 2012. Quantitative single-cell ion-channel gene expression profiling through an improved qRT-PCR technique combined with whole cell patch clamp. J. Neurosci. Methods 209:227-234. https://doi.org/10.1016/j.jneumeth.2012.06.008
  30. Wang, G. P. and C. S. Xu. 2010. Reference gene selection for real-time RT-PCR in eight kinds of rat regenerating hepatic cells. Mol. Biotechnol. 46:49-57. https://doi.org/10.1007/s12033-010-9274-5
  31. Yoon, J. R., P. D. Laible, M. Gu, H. N. Scott, and F. R. Collart. 2002. Express primer tool for high-throughput gene cloning and expression. Biotechniques 33:1328-1333.
  32. Zhang, J., Z. L. Tang, N. Wang, L. Q. Long, and K. Li. 2012. Evaluating a set of reference genes for expression normalization in multiple tissues and skeletal muscle at different development stages in pigs using quantitative real-time polymerase chain reaction. DNA Cell Biol. 31:106-113. https://doi.org/10.1089/dna.2011.1249
  33. Zi, X. D., H. W. Xu, and Y. Wang. 2012. Variation in sequences and mRNA expression levels of inhibin subunits alpha (INHA) and beta A (INHBA) genes between prolific and nonprolific goat breeds. Mol. Reprod. Dev. 79:238-238. https://doi.org/10.1002/mrd.22001

피인용 문헌

  1. Selection of Reference Genes for Gene Expression Studies Related to Intramuscular Fat Deposition in Capra hircus Skeletal Muscle vol.10, pp.3, 2015, https://doi.org/10.1371/journal.pone.0121280
  2. Selection of a suitable reference gene for quantitative gene expression in mouse lymph nodes after vaccination vol.10, pp.1, 2017, https://doi.org/10.1186/s13104-017-3005-y
  3. Inhibitions of FASN suppress triglyceride synthesis via the control of malonyl-CoA in goat mammary epithelial cells vol.57, pp.8, 2017, https://doi.org/10.1071/AN15708
  4. Specificity Protein 1 Regulates Gene Expression Related to Fatty Acid Metabolism in Goat Mammary Epithelial Cells vol.16, pp.1, 2015, https://doi.org/10.3390/ijms16011806
  5. Protein profiling of isolated uterine AA amyloidosis causing fetal death in goats vol.29, pp.3, 2015, https://doi.org/10.1096/fj.14-256081
  6. Selection and validation of suitable reference genes for qPCR gene expression analysis in goats and sheep under Peste des petits ruminants virus (PPRV), lineage IV infection vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-34236-7
  7. Transcriptome analysis reveals candidate genes involved in splay leg syndrome in piglets vol.59, pp.4, 2018, https://doi.org/10.1007/s13353-018-0454-5
  8. Reference gene selection for gene expression study in shell gland and spleen of laying hens challenged with infectious bronchitis virus vol.7, pp.None, 2013, https://doi.org/10.1038/s41598-017-14693-2
  9. Selection of suitable reference genes for normalization of quantitative RT-PCR (RT-qPCR) expression data across twelve tissues of riverine buffaloes ( Bubalus bubalis ) vol.13, pp.3, 2018, https://doi.org/10.1371/journal.pone.0191558
  10. The Selection of Reference Genes for Quantitative Real-Time PCR in the Ashidan Yak Mammary Gland During Lactation and Dry Period vol.9, pp.11, 2013, https://doi.org/10.3390/ani9110943
  11. Reference genes for proximal femoral epiphysiolysis expression studies in broilers cartilage vol.15, pp.8, 2020, https://doi.org/10.1371/journal.pone.0238189
  12. Goats naturally devoid of PrP C are resistant to scrapie vol.51, pp.1, 2013, https://doi.org/10.1186/s13567-019-0731-2
  13. Reference gene screening for analyzing gene expression in the heart, liver, spleen, lung and kidney of forest musk deer vol.83, pp.11, 2021, https://doi.org/10.1292/jvms.21-0281
  14. Integrated Analysis of lncRNA and mRNA Reveals Novel Insights into Wool Bending in Zhongwei Goat vol.11, pp.11, 2013, https://doi.org/10.3390/ani11113326