DOI QR코드

DOI QR Code

Accurate Estimation of Effective Population Size in the Korean Dairy Cattle Based on Linkage Disequilibrium Corrected by Genomic Relationship Matrix

  • Shin, Dong-Hyun (Department of Agricultural Biotechnology, Animal Biotechnology Major, Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Cho, Kwang-Hyun (Division of Animal Breeding and Genetics, National Institute of Animal Science, Rural Development Administration) ;
  • Park, Kyoung-Do (Genomic Informatics Center, Hankyong National University) ;
  • Lee, Hyun-Jeong (Division of Animal Genomics and Bioinformatics, National Institute of Animal science, Rural Development Administration) ;
  • Kim, Heebal (Department of Agricultural Biotechnology, Animal Biotechnology Major, Research Institute for Agriculture and Life Sciences, Seoul National University)
  • 투고 : 2013.06.04
  • 심사 : 2013.10.02
  • 발행 : 2013.12.01

초록

Linkage disequilibrium between markers or genetic variants underlying interesting traits affects many genomic methodologies. In many genomic methodologies, the effective population size ($N_e$) is important to assess the genetic diversity of animal populations. In this study, dairy cattle were genotyped using the Illumina BoviveHD Genotyping BeadChips for over 777,000 SNPs located across all autosomes, mitochondria and sex chromosomes, and 70,000 autosomal SNPs were selected randomly for the final analysis. We characterized more accurate linkage disequilibrium in a sample of 96 dairy cattle producing milk in Korea. Estimated linkage disequilibrium was relatively high between closely linked markers (>0.6 at 10 kb) and decreased with increasing distance. Using formulae that related the expected linkage disequilibrium to $N_e$, and assuming a constant actual population size, $N_e$ was estimated to be approximately 122 in this population. Historical $N_e$, calculated assuming linear population growth, was suggestive of a rapid increase $N_e$ over the past 10 generations, and increased slowly thereafter. Additionally, we corrected the genomic relationship structure per chromosome in calculating $r^2$ and estimated $N_e$. The observed $N_e$ based on $r^2$ corrected by genomics relationship structure can be rationalized using current knowledge of the history of the dairy cattle breeds producing milk in Korea.

키워드

참고문헌

  1. Ardlie, K. G., L. Kruglyak, and M. Seielstad. 2002. Patterns of linkage disequilibrium in the human genome. Nat. Rev. Genet. 3:299-309. https://doi.org/10.1038/nrg777
  2. Arias, J. A., M. Keehan, P. Fisher, W. Coppieters, and R. Spelman 2009. A high density linkage map of the bovine genome. BMC Genet. 10:18. https://doi.org/10.1186/1471-2156-10-18
  3. Calus, M., A. de Roos, and R. Veerkamp. 2008. Accuracy of genomic selection using different methods to define haplotypes. Genetics 178:553-561. https://doi.org/10.1534/genetics.107.080838
  4. Corbin, L., S. Bishop, J. Swinburne, M. Vaudin, S. Blott, and J. Woolliams. 2010. The impact of method on the estimated effective population size of a Thoroughbred population using genotype data. Proceedings of the 9th World Congress on Genetics Applied to Livestock Production.
  5. Corbin, L., S. Blott, J. Swinburne, M. Vaudin, S. Bishop, and J. Woolliams. 2010. Linkage disequilibrium and historical effective population size in the Thoroughbred horse. Anim. Genet. 41:8-15. https://doi.org/10.1111/j.1365-2052.2010.02092.x
  6. Daetwyler, H. D., R. Pong-Wong, B. Villanueva, and J. A. Woolliams. 2010. The impact of genetic architecture on genome-wide evaluation methods. Genetics 185:1021-1031. https://doi.org/10.1534/genetics.110.116855
  7. De Roos, A., B. J. Hayes, R. Spelman, and M. E. Goddard. 2008. Linkage disequilibrium and persistence of phase in Holstein-Friesian, Jersey and Angus cattle. Genetics 179:1503-1512. https://doi.org/10.1534/genetics.107.084301
  8. DerSimonian, R. and N. Laird. 1986. Meta-analysis in clinical trials. Control. Clin. Trials 7:177-188. https://doi.org/10.1016/0197-2456(86)90046-2
  9. Du, F.-X., A. C. Clutter, and M. M. Lohuis. 2007. Characterizing linkage disequilibrium in pig populations. Int. J. Biol. Sci. 3: 166-178.
  10. Falconer, D. S., T. F. Mackay, and R. Frankham. 1996. Introduction to Quantitative Genetics (4th edn). Trends in Genetics 12:280. https://doi.org/10.1016/0168-9525(96)81458-2
  11. Flury, C., M. Tapio, T. Sonstegard, C. Drogemuller, T. Leeb, H. Simianer, O. Hanotte, and S. Rieder. 2010. Effective population size of an indigenous Swiss cattle breed estimated from linkage disequilibrium. J. Anim. Breed. Genet. 127:339-347. https://doi.org/10.1111/j.1439-0388.2010.00862.x
  12. Goddard, K. A., P. J. Hopkins, J. M. Hall, and J. S. Witte. 2000. Linkage disequilibrium and allele-frequency distributions for 114 single-nucleotide polymorphisms in five populations. Am. J. Hum. Genet. 66:216-234. https://doi.org/10.1086/302727
  13. Hayes, B., P. Bowman, A. Chamberlain, and M. Goddard. 2009. Invited review: Genomic selection in dairy cattle: Progress and challenges. J. Dairy Sci. 92:433-443. https://doi.org/10.3168/jds.2008-1646
  14. Hayes, B. and M. Goddard. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819-1829.
  15. Hayes, B. J., P. M. Visscher, H. C. McPartlan, and M. E. Goddard. 2003. Novel multilocus measure of linkage disequilibrium to estimate past effective population size. Genome Res. 13:635-643. https://doi.org/10.1101/gr.387103
  16. Hill, W. and A. Robertson. 1968. Linkage disequilibrium in finite populations. Theor. Appl. Genet. 38:226-231. https://doi.org/10.1007/BF01245622
  17. Huang, W., B. Kirkpatrick, G. Rosa, and H. Khatib. 2010. A genome-wide association study using selective DNA pooling identifies candidate markers for fertility in Holstein cattle. Anim. Genet. 41:570-578. https://doi.org/10.1111/j.1365-2052.2010.02046.x
  18. Jiang, L., J. Liu, D. Sun, P. Ma, X. Ding, Y. Yu, and Q. Zhang. 2010. Genome wide association studies for milk production traits in Chinese Holstein population. PLoS One 5(10):e13661. https://doi.org/10.1371/journal.pone.0013661
  19. Khatkar, M. S., F. W. Nicholas, A. R. Collins, K. R. Zenger, J. A. Cavanagh, W. Barris, R. D. Schnabel, J. F. Taylor, and H. W. Raadsma. 2008. Extent of genome-wide linkage disequilibrium in Australian Holstein-Friesian cattle based on a high-density SNP panel. BMC Genomics 9:187. https://doi.org/10.1186/1471-2164-9-187
  20. Mangin, B., A. Siberchicot, S. Nicolas, A. Doligez, P. This, and C. Cierco-Ayrolles. 2012. Novel measures of linkage disequilibrium that correct the bias due to population structure and relatedness. Heredity 108:285-291. https://doi.org/10.1038/hdy.2011.73
  21. Muir, W., G. Wong, Y. Zhang, J. Wang, M. Groenen, R. Crooijmans, H.-J. Megens, H. Zhang, J. McKay, and S. McLeod. 2008. Review of the initial validation and characterization of a 3K chicken SNP array. World's Poult. Sci. J. 64:219-226.
  22. Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira, D. Bender, J. Maller, P. Sklar, P. I. De Bakker, and M. J. Daly. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81: 559-575. https://doi.org/10.1086/519795
  23. Qanbari, S., E. Pimentel, J. Tetens, G. Thaller, P. Lichtner, A. Sharifi, and H. Simianer. 2010. The pattern of linkage disequilibrium in German Holstein cattle. Anim. Genet. 41: 346-356.
  24. Sahana, G., B. Guldbrandtsen, C. Bendixen, and M. Lund. 2010. Genome-wide association mapping for female fertility traits in Danish and Swedish Holstein cattle. Anim. Genet. 41:579-588. https://doi.org/10.1111/j.1365-2052.2010.02064.x
  25. Schaeffer, L. 2006. Strategy for applying genome-wide selection in dairy cattle. J. Anim. Breed. Genet. 123:218-223. https://doi.org/10.1111/j.1439-0388.2006.00595.x
  26. Shifman, S., J. Kuypers, M. Kokoris, B. Yakir, and A. Darvasi. 2003. Linkage disequilibrium patterns of the human genome across populations. Hum. Mol. Genet. 12:771-776. https://doi.org/10.1093/hmg/ddg088
  27. Sved, J. 1971. Linkage disequilibrium and homozygosity of chromosome segments in finite populations. Theor. Popul. Biol. 2:125-141. https://doi.org/10.1016/0040-5809(71)90011-6
  28. Tenesa, A., P. Navarro, B. J. Hayes, D. L. Duffy, G. M. Clarke, M. E. Goddard, and P. M. Visscher. 2007. Recent human effective population size estimated from linkage disequilibrium. Genome Res. 17:520-526. https://doi.org/10.1101/gr.6023607
  29. Thevenon, S., G.-K. Dayo, S. Sylla, I. Sidibe, D. Berthier, H. Legros, D. Boichard, A. Eggen, and M. Gautier. 2007. The extent of linkage disequilibrium in a large cattle population of western Africa and its consequences for association studies. Anim. Ggenet. 38:277-286. https://doi.org/10.1111/j.1365-2052.2007.01601.x
  30. Toosi, A., R. Fernando, and J. Dekkers. 2010. Genomic selection in admixed and crossbred populations. J. Anim. Sci. 88:32-46. https://doi.org/10.2527/jas.2009-1975
  31. Villa-Angulo, R., L. K. Matukumalli, C. A. Gill, J. Choi, C. P. Van Tassell, and J. J. Grefenstette. 2009. High-resolution haplotype block structure in the cattle genome. BMC Genet. 10:19. https://doi.org/10.1186/1471-2156-10-19
  32. Wang, J. 2005. Estimation of effective population sizes from data on genetic markers. Phil. Trans. R. Soc. B: Biol. Sci. 360:1395-1409. https://doi.org/10.1098/rstb.2005.1682
  33. Yu, J., G. Pressoir, W. H. Briggs, I. V. Bi, M. Yamasaki, J. F. Doebley, M. D. McMullen, B. S. Gaut, D. M. Nielsen, and J. B. Holland. 2005. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38:203-208.
  34. Zhao, H., D. Nettleton, M. Soller, and J. Dekkers. 2005. Evaluation of linkage disequilibrium measures between multi-allelic markers as predictors of linkage disequilibrium between markers and QTL. Genet. Res. 86:77-87. https://doi.org/10.1017/S001667230500769X

피인용 문헌

  1. Genome-association analysis of Korean Holstein milk traits using genomic estimated breeding value vol.30, pp.3, 2015, https://doi.org/10.5713/ajas.15.0608
  2. Inferring Population Size History from Large Samples of Genome-Wide Molecular Data - An Approximate Bayesian Computation Approach vol.12, pp.3, 2016, https://doi.org/10.1371/journal.pgen.1005877
  3. Genetic Divergence of Cattle Populations Based on Genomic Information vol.47, pp.3, 2016, https://doi.org/10.1515/sab-2016-0016
  4. Extent of linkage disequilibrium and effective population size of Korean Yorkshire swine vol.31, pp.12, 2018, https://doi.org/10.5713/ajas.17.0258
  5. Estimation of effective population size using single-nucleotide polymorphism (SNP) data in Jeju horse vol.56, pp.8, 2014, https://doi.org/10.1186/2055-0391-56-28
  6. Genome-Wide Linkage Disequilibrium and the Extent of Effective Population Sizes in Six Chinese Goat Populations Using a 50K Single Nucleotide Polymorphism Panel vol.9, pp.6, 2013, https://doi.org/10.3390/ani9060350
  7. Genome-Wide Runs of Homozygosity, Effective Population Size, and Detection of Positive Selection Signatures in Six Chinese Goat Breeds vol.10, pp.11, 2019, https://doi.org/10.3390/genes10110938
  8. Genomic Tools for Effective Conservation of Livestock Breed Diversity vol.12, pp.1, 2013, https://doi.org/10.3390/d12010008
  9. Unraveling the Genetic Diversity and Population Structure of Bangladeshi Indigenous Cattle Populations Using 50K SNP Markers vol.11, pp.8, 2013, https://doi.org/10.3390/ani11082381